ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
H. Takeda, K. Miyamoto, S. Fuma, N. Ishii, K. Yanagisawa
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 755-758
Technical Paper | Tritium Science and Technology - Biology, Health, and Radiation | doi.org/10.13182/FST05-A1030
Articles are hosted by Taylor and Francis Online.
Tritiated water and some tritiated organic compounds (leucine, glucose and thymidine) were administered to rats by oral ingestion and the content of organically bound tritium (OBT) in subcellular fractions (cold PCA soluble, ethanol-ether soluble, hot PCA soluble and alkali soluble) of the liver were determined at various time points after ingestion. In the case of tritiated water, the initial OBT content was high in the cold PCA soluble fraction, which contains low molecular weight components, but as the time proceed the OBT was distributed to other fractions, which contains relatively high molecular weight components. Significant time variation in the OBT content was observed in the hot PCA soluble fraction containing nucleic acids, in which the OBT content, expressed as percentage of OBT content in all fractions, changed from 1 % at 12 hours to 15 % at 50 days. In the cases of tritiated organic compounds, the subcellular distribution of OBT was widely changed owing to their biochemical and metabolic characteristics. Thus, the OBT distribution among subcellular fractions was changed depending on the chemical form at ingestion and on the time after ingestion. The OBT distribution among four subcellular fractions after 22 day' continuous ingestion was also dependent on the chemical form of ingested tritium. Present results should be taken into account for internal dose estimation of tritium in different chemical forms.