ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
O. Kazachenko
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 737-742
Technical Paper | Tritium Science and Technology - Tritium in Neutrino Physics | doi.org/10.13182/FST05-A1027
Articles are hosted by Taylor and Francis Online.
The objective of the KArlsruhe TRItium Neutrino experiment (KATRIN) is a direct measurement of the absolute mass of the electron (anti)neutrino by means of a precise study of the endpoint region of the tritium beta spectrum. The expected sensitivity of KATRIN to the neutrino mass is 0.2 eV (90% CL). The experimental set-up consists of four main parts: a source of electrons from tritium beta decay, a pre-spectrometer, a unique electron spectrometer with very high energy resolution and a multi pixel detector for low energy beta particles. A "Windowless Gaseous Tritium Source" (WGTS) with differential pumping of tritium is foreseen as the main source in KATRIN. This kind of source represents a gas dynamic system with the source tube 90 mm in diameter and 10 m in length placed in a strong magnetic field and differential pumping stages at both ends of this tube. Tritium gas will be injected in the centre of the source tube producing a gas flow directed to the ends. After pumping down by the differential pumps, compressing up to several hundreds millibars by the transfer pump and purification on the palladium membrane filter, tritium will be injected back to the source tube. The estimated flow rate of the circulated tritium is 1.8 standard cubic centimeters per second (sccs), which corresponds to 2.4×10-4 g/s (40 g/day). The stability of gas density and isotope composition in the source tube should be provided on the level of 0.1%. This paper will describe the design concept of the WGTS and will discuss the tritium processing techniques associated with the KATRIN experiment.