ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Teppei Otsuka et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 708-711
Technical Paper | Tritium Science and Technology - Properties, Reactions, and Applications | doi.org/10.13182/FST05-A1022
Articles are hosted by Taylor and Francis Online.
Hydrogen distributions around non-metallic inclusions in steels are successfully characterized with high-resolution tritium autoradiography. The autoradiographs show that hydrogen accumulation characteristics around the inclusions depend on types of the inclusions. In the case of MnS, hydrogen was inhomogeneously distributed in the ferrite matrix surrounding the MnS inclusion, probably because hydrogen is trapped in defects formed around MnS. The inhomogeneous distribution of hydrogen may be originated from the asymmetric stress field produced by a contraction of the MnS phase in the heat treatment, i.e. the inhomogeneous volumetric change of MnS owing to its larger thermal expansion than that of the ferrite phase. In the case of Al2O3, hydrogen was intensely localized at boundary layers of the ferrite matrix surrounding the Al2O3 inclusion. This could be attributed to hydrogen trapping at defects introduced by a residual stress in the boundary layers of the ferrite matrix due to larger contraction of the ferrite phase than that of the Al2O3 phase on cooling. Similarly hydrogen was accumulated in the surrounding ferrite matrix but more widely distributed around Cr carbide probably because difference in the thermal expansion between the Cr carbide and ferrite phases is less than that between the Al2O3 and ferrite phases.