ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Teppei Otsuka et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 708-711
Technical Paper | Tritium Science and Technology - Properties, Reactions, and Applications | doi.org/10.13182/FST05-A1022
Articles are hosted by Taylor and Francis Online.
Hydrogen distributions around non-metallic inclusions in steels are successfully characterized with high-resolution tritium autoradiography. The autoradiographs show that hydrogen accumulation characteristics around the inclusions depend on types of the inclusions. In the case of MnS, hydrogen was inhomogeneously distributed in the ferrite matrix surrounding the MnS inclusion, probably because hydrogen is trapped in defects formed around MnS. The inhomogeneous distribution of hydrogen may be originated from the asymmetric stress field produced by a contraction of the MnS phase in the heat treatment, i.e. the inhomogeneous volumetric change of MnS owing to its larger thermal expansion than that of the ferrite phase. In the case of Al2O3, hydrogen was intensely localized at boundary layers of the ferrite matrix surrounding the Al2O3 inclusion. This could be attributed to hydrogen trapping at defects introduced by a residual stress in the boundary layers of the ferrite matrix due to larger contraction of the ferrite phase than that of the Al2O3 phase on cooling. Similarly hydrogen was accumulated in the surrounding ferrite matrix but more widely distributed around Cr carbide probably because difference in the thermal expansion between the Cr carbide and ferrite phases is less than that between the Al2O3 and ferrite phases.