ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Tome Kosteski, Nazir P. Kherani, Walter T. Shmayda, Stefan Costea, Stefan Zukotynski
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 700-703
Technical Paper | Tritium Science and Technology - Properties, Reactions, and Applications | doi.org/10.13182/FST05-A1020
Articles are hosted by Taylor and Francis Online.
p-i-n junction nuclear devices have been made using tritiated amorphous silicon in the intrinsic region. In this unique device, tritium passivates defects and at the same time is an internal source of beta particles. The beta particles traverse the i-layer and through impact ionization, electron-hole pairs are generated. These charges are separated by the built-in field of the p-i-n junction and electrical power is generated. The power from the devices is about 0.2 nW cm-2 in a device of 400 nm thickness. The decay of tritium leads to the formation of dangling bonds and strain related defects in the silicon lattice. These defects lead to a decrease in the effective width of the space charge region and thereby to an increase in the recombination rate of carriers. As a consequence the electric power decreases with time. To overcome this degradation in performance, delta layered devices were made by selectively introducing tritium into the intrinsic region by modulating the tritium gas fraction during film deposition. The electric power from devices with a delta layer have better stability.