ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
N. T. Kazakovsky, I. A. Abramov, A. I. Vedeneev, M. V. Glagolev, A. A. Selezenev
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 692-695
Technical Paper | Tritium Science and Technology - Properties, Reactions, and Applications | doi.org/10.13182/FST05-A1018
Articles are hosted by Taylor and Francis Online.
A method and a laboratory facility were developed for the purpose of determining inflammation temperature of hydrogen-oxygen gaseous mixtures (HOGM). We have determined the inflammation temperature of HOGM containing the following impurities: Ar, Xe, H2O and tritium within the range of initial gas pressure from 3 to 13 kPa. The results agree well with the available reference and numerical simulation results. The inflammation temperatures of HOGM in the range of initial gas pressure from 2 to 13 kPa increases from 793 to 873 K. Average inflammation temperatures of hydrogen and deuterium mixtures differ no more than 1.6 %. Introduction of inert gases (argon and xenon) into gaseous mixture up to 45 volume percent does not change inflammation temperature significantly. Water introduction (in the range from 2.4 to 25 volume percent) does not cause gaseous mixture inflammation. The effect of tritium -radiation on temperature of GM inflammation within the range of tritium concentration concerned is insignificant and agrees with the results of numerical modeling obtained earlier.