ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Oyaidzu et al.
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 638-641
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A1006
Articles are hosted by Taylor and Francis Online.
The annihilation behaviors of radiation defects in neutron-irradiated LiAlO2 were investigated by means of Electron Spin Resonance (ESR). It was found that the annihilation of radiation defects consisted of two processes, the fast and the slow processes. The activation energies of them were determined to be 0.14 ± 0.01 eV and 0.58 ± 0.01 eV, respectively. The F+-center was found to act as a trapping site of tritium by comparing its annihilation behavior with that of tritium release. Taking the results obtained in the present and the previous works in consideration, it can be said that the annihilation process of oxygen vacancies is of very important because tritium release from the bulk of a breeder starts just after the slow annealing process becomes dominant. Therefore, to understand the slow annihilation process of radiation defects is an important key to clarify the mechanism of tritium release from ceramic breeder materials.