ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
FERC rejects interconnection deal for Talen-Amazon data centers
The Federal Energy Regulatory Commission has denied plans for Talen Energy to supply additional on-site power to an Amazon Web Services’ data center campus from the neighboring Susquehanna nuclear plant in Pennsylvania.
M. Aquilini, L. Baldi, P. Bibet, R. Bozzi, A. Bruschi, R. Cesario, S. Cirant, C. Ferro, F. Gandini, S. di Giovenale, G. Granucci, T. Fortunato, G. Maddaluno, F. de Marco, G. Maffia, A. Marra, V. Mellera, F. Mirizzi, V. Muzzini, A. Nardone, A. Orsini, M. Papalini, P. Papitto, V. Pericoli-Ridolfini, P. Petrolini, S. Petrosino, S. Podda, G. L. Ravera, G. B. Righetti, M. Roccon, F. Santini, M. Sassi, A. Simonetto, C. Sozzi, N. Spinicchia, A. A. Tuccillo, P. Zampelli
Fusion Science and Technology | Volume 45 | Number 3 | May 2004 | Pages 459-482
Technical Paper | Frascati Tokamak Upgrade (FTU) | doi.org/10.13182/FST04-A525
Articles are hosted by Taylor and Francis Online.
High-frequency wave systems with high-power density launching capability have been the preferred choice to heat the Frascati Tokamak Upgrade (FTU) because of physics arguments (electron heating at very high density) and space constraints from the compactness of the machine design (8-cm-wide port). They do include an 8-GHz lower hybrid current drive (LHCD) system, a 140-GHz electron cyclotron resonance heating (ECRH) system, and a 433-MHz ion Bernstein waves system (IBW). The technical aspects of these systems will be reviewed in this article. The main features of the design include the following: (a) a very compact conventional LHCD grill with a compact window to keep the vacuum on 48 (12 columns, 4 rows) individual waveguides allowing the maximum flexibility in spectra generation to be achieved; power handling up to [approximately equal to]10 kW/cm2 has been achieved, (b) ECRH launchers designed as a quasi-optical system (implementing ITER relevant solutions) retaining the maximum flexibility in the equatorial launcher (poloidal/toroidal steerability) to exploit a variety of scenarios, (c) a two-waveguides launching array making the IBW experiment on FTU unique. Other technical aspects (sources, transmission lines, etc.) are also reviewed. The development of a new ITER relevant lower hybrid launcher, the passive active multijunction, is described.