ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
National awards to be presented at ANS Winter Conference
One of the few constants at American Nuclear Society national meetings is the recognition of exceptional individuals in the nuclear community. ANS President Lisa Marshall has named this season’s award recipients, who will receive recognition at the upcoming Winter Conference and Expo in Orlando, Fla.
ANS also announces the winners of awards presented by the Society’s professional divisions. These awards will be mailed to the recipients, and the divisions will recognize honorees at various division functions and meetings this fall. The 19 professional divisions of ANS are constituent units and represent a vast array of nuclear science and technology disciplines.
J. Rapp, A. Lumsdaine, C. J. Beers, T. M. Biewer, T. S. Bigelow, J. F. Caneses, J. B. O. Caughman, R. H. Goulding, N. Kafle, C. H. Lau, E. Lindquist, P. A. Piotrowicz, H. Ray, M. Showers, the MPEX Team
Fusion Science and Technology | Volume 75 | Number 7 | October 2019 | Pages 654-663
Technical Paper | doi.org/10.1080/15361055.2019.1610315
Articles are hosted by Taylor and Francis Online.
The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is being used to qualify the plasma source and heating systems for the Material Plasma Exposure eXperiment (MPEX). The MPEX will address important and urgent research needs on plasma material interactions for future fusion reactors. In MPEX, plasma-facing components (nonirradiated and a priori neutron irradiated) will be exposed to plasma conditions as they are expected in future fusion reactors. The MPEX, a steady-state device enabled by superconducting magnets, will be able to break into new ground by assessing plasma-facing materials and components at an ion fluence level in the range of 1030 to 1031 m−2. To achieve the relevant plasma conditions, high-density plasmas (>4 × 1019 m−3) are produced with a high-power helicon source. The so-produced low-temperature helicon plasma is then additionally heated with waves in the ion cyclotron resonance frequency and electron cyclotron resonance frequency domains. Proto-MPEX has achieved all key parameters (source ne, source Te, source Ti, target Te, target Ti, target ion flux, and target heat flux) within a factor of 2 of the design requirements of MPEX, albeit not simultaneously. These parameters were achieved with a total installed heating power of 330 kW, which is less than half of the planned heating power in the MPEX (800 kW). An overview of the latest results from Proto-MPEX is given. These results are shown in relationship to the MPEX system goals. Remaining necessary research and development tasks are discussed. The MPEX is currently in the conceptual design phase. The status of the design and an overview of the system requirements are presented.