ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
World Nuclear Energy Day is coming next week
The annual day of celebrating nuclear energy is right around the corner. On December 2, World Nuclear Energy Day will be recognized internationally through workshops, panel discussions, dinner meetings, and special performances focused on educational outreach, emerging green technologies, and innovative thinking that can restore the world’s ecosystems with nuclear energy.
Shin Kajita, Evgeny Veshchev, Maarten De Bock, Robin Barnsley, Manfred Von Hellermann, Michael Walsh
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 37-46
Technical Paper | doi.org/10.1080/15361055.2017.1390389
Articles are hosted by Taylor and Francis Online.
In ITER, reflection of photons on vacuum vessel will make parasitic signals (stray light) for optical diagnostics. In this study, to estimate and mitigate the effect of the stray light in ITER in a systematic manner, a ray transfer matrix was constructed based on ray tracing calculations for a divertor impurity monitor and charge-exchange recombination spectroscopy (CXRS). It is shown that the allocation of the sources around the strike point and the X-point, where the emission is strong, is important for the model used to build the transfer matrix to effectively mitigate the stray light. The origin of the stray light for the core CXRS is investigated, and a case study to subtract the stray light is shown.