ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Diablo Canyon completes dry storage campaign, seeks ISFSI license renewal
Holtec International announced that it has completed the campaign to transfer Diablo Canyon’s spent nuclear to dry storage ahead of its planned schedule, paving the way for the continued operation of the central California nuclear power plant.
K. Koizumi, M. Nakahira, K. Oka, Y. Itou, H. Takahashi, E. Tada, K. Ioki, G. Johnson, M. Onozuka, Y. Utin, G. Sannazzaro, F. Elio, K. Takahashi
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 586-590
International Thermonuclear Experimental Reactor (ITER) (Poster Session) | doi.org/10.13182/FST98-A11963677
Articles are hosted by Taylor and Francis Online.
Fabrication of a full-scale sector model of the ITER vacuum vessel, which was initiated in 1995 as one of the Large Seven ITER R&D Projects, was completed in September 1997. The full-scale sector model corresponds to an 18° toroidal sector, is composed of two 9° sectors, Sector A and B, which are spliced at the port center according to the current ITER design. In order to satisfy tight manufacturing tolerances of ± 5 mm and to assure the structural integrity of a double-walled structure, a combination of Gas Tungsten Arc (TIG)/Electron Beam (EB) welding and TIG/Gas Metal Arc (MIG) welding were adopted for Sector-A and B, respectively. Although the different fabrication procedures and welding techniques were employed for the fabrication, both sectors have successfully satisfied the dimensional accuracy of ± 3 mm for the total height, total width and total wall thickness. After the completion of fabrication, both sectors were shipped to the test site in Japan Atomic Energy Research Institute (JAERI) and assembly test was begun in October 1997. The first demonstration test of automatic narrow gap TIG welding of the field joints between sectors was successfully completed at the end of May 1998. This paper outlines the design and fabrication procedures and describes the results of the fabrication and assembly test of Sector A and B.