ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
Fusion Science and Technology
January 2026
Latest News
From uncertainty to vitality: The future of nuclear energy in Illinois
Nuclear is enjoying a bit of a resurgence. The momentum for reliable energy to support economic development around the country—specifically data centers and AI—remains strong, and strongly in favor of nuclear. And as feature coverage on the states in the January 2026 issue of Nuclear News made abundantly clear, many states now see nuclear as necessary to support rising electricity demand while maintaining a reliable grid and reaching decarbonization goals.
C. E. Kessel, F. M. Poli
Fusion Science and Technology | Volume 67 | Number 1 | January 2015 | Pages 220-239
Technical Paper | doi.org/10.13182/FST14-793
Articles are hosted by Taylor and Francis Online.
The conservative physics and conservative technology tokamak power plant ARIES-ACT2 has a major radius of 9.75 m at an aspect ratio of 4.0 and has strong shaping with elongation of 2.2 and triangularity of 0.63. The plasma current is 14 MA, and the toroidal field at the plasma major radius is 8.75 T, making the maximum field at the toroidal field coil 16 T. The no-wall βN reaches ∼2.4, limited by n = 1 external kink mode, and can be extended to 3.2 with a stabilizing shell behind the ring structure shield. The bootstrap current fraction is 77% with a q95 of 8.0, requiring ∼4.0 MA of external current drive. This current is supplied with 30 MW of ion cyclotron radio frequency/fast wave and 80 MW of negative ion neutral beams. Up to 1.0 MA can be driven with lower hybrid (LH) with no wall, and 1.5 or more MA can be driven with a stabilizing shell. Electron cyclotron was examined and is most effective for safety factor control over ρ ∼0.2 to 0.6 with 20 MW. The pedestal density is ∼0.65 × 1020/m3, and the temperature is ∼9.0 keV. The H98 factor is 1.25, n/nGr = 1.3, and the net power to LH threshold power is 1.3 to 1.4 in the flattop. Because of the high toroidal field and high central temperature, the cyclotron radiation loss was found to be high depending on the first-wall reflectivity.