ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. H. Degnan, W. L. Baker, M. L. Alme, C. Boyer, J. S. Buff, J. D. Beason, C. J. Clouse, S. K. Coffey, D. Dietz, M. H. Frese, J. D. Graham, D. J. Hall, J. L. Holmes, E. A. Lopez, R. E. Peterkin, Jr., D. W. Price, N. F. Roderick, S. W. Seiler, C. R. Sovinec, P. J. Turchi
Fusion Science and Technology | Volume 27 | Number 2 | March 1995 | Pages 115-123
Experimental Device | Special Section: Pulsed High-Density Systems | doi.org/10.13182/FST95-A30368
Articles are hosted by Taylor and Francis Online.
Electromagnetic implosions of shaped cylindrical aluminum liners that remain at solid density are discussed. The approximate liner parameters have an initial radius of 3 to 4 cm, are 4 cm in height, and are ∼0.1 cm thick. The liners are driven by the Shiva Star 1300-µf capacitor bank at an 84-kV charging voltage and an ∼30-nH total initial inductance (including implosion load). The discharge current travels along the length of the liner and rises to 14 MA in ∼8 µs. The implosion time is ∼12 µs. Diagnostics include inductive current and capacitive voltage probes, magnetic probes, and radiography. Both right-circular cylinder and conical liner implosion data are displayed and discussed. Radiography indicates implosion behavior substantially consistent with two-dimensional magnetohydrodynamic calculations, which predict inner surface implosion velocities exceeding 20 km/s, and compressed density of two to three times solid density. Less growth of perturbations is evident for the conical liner (∼1% thickness tolerance) than for the right-circular cylindrical liner (∼3% thickness tolerance).