ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
C. Petitjean, F. Atchison, G. Heidenreich, H. K. Walter, F. Amelotti, R. Andreani, F. de Marco, S. Monti, M. Pillon, M. Vecchi, V. E. Markushin, L. I. Ponomarev, C. Niebuhr
Fusion Science and Technology | Volume 25 | Number 4 | July 1994 | Pages 437-450
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30251
Articles are hosted by Taylor and Francis Online.
A design study is presented for an intense 14-MeV neutron source based on muon-catalyzed fusion to be used for first-wall and blanket material research for future fusion reactors. Negative pions are produced inside a 5- to 10-T magnetic field by an intense deuteron beam interacting with a 30- to 50-cm-long carbon target. The pions and the muons resulting from the decay of pions inflight are collected in the backward direction and stopped in a high-density deuterium-tritium (D-T) target. With an 18-MWdeuteron beam at 1.5 GeV (12 mA = 7.5 × 1016 d/s), ∼ 1016 π−/s can be generated, which will decay to muons of which up to 1015 μ−/s stop in the D-T mixture. Assuming Xc = 100 fusions per muon, muon-catalyzed fusion produces 14-MeV neutrons with a source strength of up to 1017 n/s, i.e., a neutron power of 200 kW. A neutron flux of up to 1014/cm2·s (10 dpa/yr) can be achieved in test volumes of several litres. These numbers, however, do not represent a technological limit. This source has about the same power efficiency for neutron generation as low-energy beams (d-Li stripping). It also has the advantage of producing the original 14-MeV fusion spectrum without tails, isotropically into a 4π solid angle. In addition, the power density and heat load of the primary target are a considerably smaller problem. The environment of the secondary target, the neutron source itself, can be made to resemble part of the tokamak ring to be simulated. The noninteracting part of the beam (30 to 40%) can be disposed of separately or reused for another facility (e.g., a spallation neutron source).