ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Peter Glück
Fusion Science and Technology | Volume 24 | Number 1 | August 1993 | Pages 122-126
Technical Notes on Cold Fusion | doi.org/10.13182/FST93-A30180
Articles are hosted by Taylor and Francis Online.
The lack of reproducibility of the cold fusion experiments, aggravated by the great diversity and inconsistency of the positive results, implies that these nuclear phenomena are hypersensitive, i.e., correlated to a “chaotic” factor. All the factors considered so far, such as structure, transformations, or defects of the crystal lattice; bubbles of deuterium; dendrites, etc., are insufficiently chaotic to explain the known facts. Experimental data suggest that nuclear reactions take place in active sites on the surface of the lattice, that they are stimulated by dynamics factors, and that they represent an extreme form of heterogeneous catalysis. Consequently, according to modern ideas concerning catalysis, the desired chaotic factor is the surface dynamics of some metallic deutendes (hydrides). This hypothesis, called the surfdyn concept, is compatible with all published data, explains the peculiarities of cold fusion, and must be supported by an adequate theory describing the nature and mechanisms of the different nuclear processes.