ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Supplier Showcase focus: Radiation protection
The American Nuclear Society is hosting a Supplier Showcase webinar, “Dose-Free, Radiation Visualization, and Mitigation,” tomorrow, November 13, from 2:00 p.m. to 3:00 p.m. (EST) on the capabilities of radiation visualization using the RadVision3D product.
The webinar, sponsored by Transco Products Inc., is free for all viewers. Registration is required.
J. Q. Ling W. D. Booth, R. Carrera, D. Tesar
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1823-1827
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29609
Articles are hosted by Taylor and Francis Online.
A remote system is considered for the in-vessel maintenance of the IGNITEX device. The specified maintenance tasks include: inspection, coating repair of the first wall, and cleaning of the vacuum vessel. In this paper the conceptual design of the in-vessel remote maintenance system (IVRMS) is presented. The IVRMS consists of a manipulator chain, a series of dedicated tools as end-effectors, a control system, and a delivery system. A manipulator of snake type with 11 degrees of freedom (DOF), consisting of a toroidal chain (6 links) and a poloidal chain (3 links), is used to provide 90° toroidal reach and 360° poloidal reach in the IGNITEX vacuum vessel. The mechanical structure design of the manipulator uses light weight and compact actuator modules and carbon fiber materials for the links. The interface of the IVRMS with the IGNITEX system is described. A system control layout including the hardware and software architecture is discussed. The concept and implementation of this design provides general features for in-vessel remote maintenance of a small fusion tokamak.