ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
P. C. Souers, E. M. Fearon, E. R. Mapoles, J. D. Sater, G. W. Collins, J. R. Gaines, R. H. Sherman, J. R. Bartlit
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 855-863
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25242
Articles are hosted by Taylor and Francis Online.
The expected value of nuclear spin polarization to inertial confinement fusion is recapitulated. A comparison of brute force polarization versus dynamic nuclear polarization, as applied to solid deuterium-tritium, is given, and the need for a long triton polarization memory time (longitudinal nuclear relaxation time) is shown. The time constant for 25 mol%T2-50 DT-25 D2 (D-T) is a short 0.3 s at 5 K and waiting in the presence of tritium radioactivity lowers it to 0.1 s. Enriched 90 to 96% molecular DT has been synthesized and held 3 to 4 hours at 10 K, which lowers the overall J=1 T2 concentration to about 0.1%. The resulting memory time can be raised in this way to 0.7 to 0.8 s. These samples were then melted and nHp added, which increased the memory times to 6 to 8 s - an increase of twenty-fold over regular D-T at 5 to 6 K. The theory shows that the species shortening the triton memory time is the J=1 T2, which can be reduced in our samples only by radioactive self-catalysis. Cryogenic distillation is considered as a possible means of removing the J=1 T2 from molecular DT.