ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
T. Kawabe, S. Hirayama, Y. Kozaki, K. Yoshikawa, N. Asami, Y. Fukai, K. Hattori, H. Hojo, T. Honda, H. Ida, T. Kitajima, S. Koda, K. Komatsu, R. Kumazawa, F. Matsuoka, T. Miyasugi, N. Morino, H. Nakashima, H. Nakata, S. Sato, Y. Uede, T. Watanabe, M. Yamada, Y. Yamamoto, H. Yamato
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1102-1110
Nuclear Technology Experiments and Facilities | doi.org/10.13182/FST86-A24880
Articles are hosted by Taylor and Francis Online.
Conceptual design study of 14-MeV neutron source (FEF) of compact DT plasma based on the mirror confinement has been carried out to clarify the critical issues both in plasma physics and engineering. Characteristic feature of FEF-II are (i) use of RF pondermotive force for MHD stability, (ii) use of water for radiation shield of SC coil and (iii) use of end electrode system including plasma direct energy conversion. Several sets of plasma parameters are obtained under the variety of conditions from the most pessimistic case where the charge exchange (CX) loss of ions is dominant to the most optimistic case where the CX loss is negligible. The engineering feasibility has been studied for the pessimistic case. It was found that most of the engineering are feasible in the optimistic case, and that even in the pessimistic case by increasing plasma parameters there is possibility to meet engineering requirement.