ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
T. Kawabe, S. Hirayama, Y. Kozaki, K. Yoshikawa, N. Asami, Y. Fukai, K. Hattori, H. Hojo, T. Honda, H. Ida, T. Kitajima, S. Koda, K. Komatsu, R. Kumazawa, F. Matsuoka, T. Miyasugi, N. Morino, H. Nakashima, H. Nakata, S. Sato, Y. Uede, T. Watanabe, M. Yamada, Y. Yamamoto, H. Yamato
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1102-1110
Nuclear Technology Experiments and Facilities | doi.org/10.13182/FST86-A24880
Articles are hosted by Taylor and Francis Online.
Conceptual design study of 14-MeV neutron source (FEF) of compact DT plasma based on the mirror confinement has been carried out to clarify the critical issues both in plasma physics and engineering. Characteristic feature of FEF-II are (i) use of RF pondermotive force for MHD stability, (ii) use of water for radiation shield of SC coil and (iii) use of end electrode system including plasma direct energy conversion. Several sets of plasma parameters are obtained under the variety of conditions from the most pessimistic case where the charge exchange (CX) loss of ions is dominant to the most optimistic case where the CX loss is negligible. The engineering feasibility has been studied for the pessimistic case. It was found that most of the engineering are feasible in the optimistic case, and that even in the pessimistic case by increasing plasma parameters there is possibility to meet engineering requirement.