ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
D. W. Weissenburger, J. M. Bialek, G. J. Cargulia, M. Ulrickson, M. J. Knott, L. R. Turner, R. B. Wehrle
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 448-461
Technical Paper | Magnet System | doi.org/10.13182/FST86-A24785
Articles are hosted by Taylor and Francis Online.
The dynamic behavior of conducting mechanical structures in high magnetic fields is complicated by the currents and forces induced by motion through the magnetic field. A series of experiments that were successfully conducted to investigate the coupling between induced currents and rigid body rotation in square loops and plates is presented. The experiments were performed with the Fusion Electromagnetic Induction Experiment facility at the Argonne National Laboratory. The observed data exhibited the magnetic damping and magnetic stiffness effects that arise in coupled systems and agreed very well with the predicted responses for both the loops and plates. The experimental arrangement consisted of a conducting test piece, rigidly mounted in a nonconducting fixture that provided a controlled stiffness against rotation. Electric currents were induced in the test loop/plate by pulsing a magnetic field oriented perpendicular to the test piece. This was done in the presence of a constant magnetic field oriented parallel to the loop/plate. The interaction of the induced currents and the background magnetic field produced a net torque about the axis of the test fixture. Measurements were made of the total current flowing around the test piece and the angular rotation versus time.