ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
National awards to be presented at ANS Winter Conference
One of the few constants at American Nuclear Society national meetings is the recognition of exceptional individuals in the nuclear community. ANS President Lisa Marshall has named this season’s award recipients, who will receive recognition at the upcoming Winter Conference and Expo in Orlando, Fla.
ANS also announces the winners of awards presented by the Society’s professional divisions. These awards will be mailed to the recipients, and the divisions will recognize honorees at various division functions and meetings this fall. The 19 professional divisions of ANS are constituent units and represent a vast array of nuclear science and technology disciplines.
K. E. Miller, J. A. Grossnickle, R. D. Brooks, C. L. Deards, T. E. DeHart, M. Dellinger, M. B. Fishburn, H. Y. Guo, B. Hansen, J. W. Hayward, A. L. Hoffman, W. S. Kimball, K. Y. Lee, D. E. Lotz, P. A. Melnik, R. D. Milroy, Z. A. Pietrzyk, G. C. Vlasses, F. S. Ohuchi, A. Tankut
Fusion Science and Technology | Volume 54 | Number 4 | November 2008 | Pages 946-961
Technical Paper | doi.org/10.13182/FST08-A1910
Articles are hosted by Taylor and Francis Online.
The original Translation, Confinement, Sustainment (TCS) experiment was upgraded [TCS Upgrade (TCSU)] to provide an ultrahigh vacuum (UHV) environment with modern discharge cleaning and wall-coating technologies. This has allowed rotating magnetic field formed field reversed configuration plasma temperatures to increase from the TCS radiation-dominated tens of electron volts to >200 eV (Te + Ti), and FRC magnetic fields to double. The improvements are directly attributable to reduced impurity levels and reduced plasma recycling losses. Some of the technologies utilized to achieve these results included replacing O-rings with wire and conflat seals; developing high-temperature, differentially pumped, elastomeric seals for bonding extremely large quartz tubes (needed for rapid field penetration) to the stainless steel vacuum chambers; and using heater blankets for vacuum baking. Extensive testing using electron microprobe and various spectroscopic techniques was performed to establish appropriate UHV cleaning and handling methods.