ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
J. D. Rader, B. H. Mills, D. L. Sadowski, M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 315-319
Divertor and High-Heat-Flux Components | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18096
Articles are hosted by Taylor and Francis Online.
The helium-cooled modular divertor concept with integrated pin array developed by the Karlsruhe Research Center (FZK) is unusual among helium-cooled tungsten divertor designs in that it relies upon an array of pin fins on the back of the cooled surface, instead of jet impingement, to cool the plasma-facing surface. The Georgia Tech group experimentally studied a similar design constructed of brass which combined jet impingement with an array of identical cylindrical pin fins using air at nondimensional coolant mass flow rates, i.e. Reynolds numbers, which spanned the range expected under prototypical conditions. The results suggested that the pin-fin array, at least for the particular geometry studied, provides little, if any, additional cooling beyond that provided by jet impingement.Given that this earlier study considered only one pin-fin array geometry, however, a numerical study was performed to investigate whether changes in the array geometry could improve performance. Specifically, numerical simulations using the commercially available computational fluid dynamics software package ANSYS® 14.0 was used to examine how varying the pitch-to-diameter ratio for the fin array and the height of the fins affected average pressure boundary temperature and the pressure drop across the divertor. These results can, with appropriate experimental validation, be used to determine whether pin-fin arrays can be used to improve the thermal performance of helium-cooled tungsten divertors.