ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
J. D. Rader, B. H. Mills, D. L. Sadowski, M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 282-287
Divertor and High-Heat-Flux Components | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-544
Articles are hosted by Taylor and Francis Online.
An experimental investigation of the thermal performance of the Helium-Cooled Multi-Jet (HEMJ) modular divertor design developed by the Karlsruhe Research Center (FZK) was previously performed at Georgia Tech using air at Reynolds numbers (Re) spanning those at which the actual He-cooled divertor is to be operated. More recently, another experimental investigation was performed by the Georgia Tech group for a similar finger-type divertor module using both air and He as coolants. The results of these experiments suggest that, in addition to matching Re, dynamic similarity between the air and He experiments requires that a correction be made to account for the differences in the relative contributions of convection and conduction (through the divertor walls) to the overall heat removal rate by the module. This correction factor depends on the thermal conductivity ratio of the solid to the coolant. Experiments similar to those previously conducted have therefore been performed using air, argon, or He as coolant for test sections constructed of brass or steel thus covering a wide range of thermal conductivity ratio. The resultant correlation between Re, the heat removal rate, and the thermal conductivity ratio from these experiments can be used to predict the thermal performance of HEMJlike divertors at prototypical operating conditions.