ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
J. D. Rader, B. H. Mills, D. L. Sadowski, M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 282-287
Divertor and High-Heat-Flux Components | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-544
Articles are hosted by Taylor and Francis Online.
An experimental investigation of the thermal performance of the Helium-Cooled Multi-Jet (HEMJ) modular divertor design developed by the Karlsruhe Research Center (FZK) was previously performed at Georgia Tech using air at Reynolds numbers (Re) spanning those at which the actual He-cooled divertor is to be operated. More recently, another experimental investigation was performed by the Georgia Tech group for a similar finger-type divertor module using both air and He as coolants. The results of these experiments suggest that, in addition to matching Re, dynamic similarity between the air and He experiments requires that a correction be made to account for the differences in the relative contributions of convection and conduction (through the divertor walls) to the overall heat removal rate by the module. This correction factor depends on the thermal conductivity ratio of the solid to the coolant. Experiments similar to those previously conducted have therefore been performed using air, argon, or He as coolant for test sections constructed of brass or steel thus covering a wide range of thermal conductivity ratio. The resultant correlation between Re, the heat removal rate, and the thermal conductivity ratio from these experiments can be used to predict the thermal performance of HEMJlike divertors at prototypical operating conditions.