ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Soren Harrison et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 277-281
Divertor and High-Heat-Flux Components | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18089
Articles are hosted by Taylor and Francis Online.
Operational requirements and research considerations make a high-temperature, toroidally continuous outer divertor an important upgrade to the Alcator C-Mod tokamak. Leading edge melting of tiles, non-uniform heat loads, large electromagnetic forces, and localized impurity sources limit the performance of bulk plasmas. These issues can be addressed by the installation of a well-aligned, toroidally continuous outer divertor. Additionally, future long pulse operation will cause the temperature of the outer divertor to reach bulk temperatures as high as 500 - 600 °C. This future operational requirement combined with the strong temperature dependence of plasma surface interactions (especially fuel retention), makes a controllable, high-temperature outer divertor desirable and necessary. The motivation, criteria, design, and R&D for the upgrade are discussed below.