ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
V. Cocilovo, G. Ramogida, E. Visca
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 230-234
Materials Development | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18082
Articles are hosted by Taylor and Francis Online.
In a fusion power reactor the Plasma Facing Components (PFC) will experience a thermal and neutron irradiation induced creep together with tensile properties degradation and swelling due to neutron irradiation. So the investigation of the long term creep effects on the materials used for the PFC's in a fusion power plant are of vital importance for the design and safe operation of the device. On the other hand the creep behavior study for a given material requires long and expensive test campaigns, repeated on specimens at different levels of neutron irradiation, because of the material parameters variation due to the cumulated irradiation.In this work we want to investigate if the numerical mechanical simulations employment, according to a proper methodology, could reduce the number of needed creep tests, because this would be a valuable help in defining suitable materials and valid conceptual designs for PFC's. For this reason a method based on the systematic variation of the parameters of the empirical law, e.g. the Norton-Bailey, is outlined. To exemplify it, the behavior of a simplified model is analyzed under thermal and mechanical cyclic loading in a time transient elasto-plastic simulation, including the creep behavior, varying the parameters in the empirical creep law for the material.