ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. X. Zhao, F. Liu, S. G. Qin, J. P. Song, G.-N. Luo
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 225-229
Materials Development | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18081
Articles are hosted by Taylor and Francis Online.
The first attempt at developing chopped W fiber-reinforced W (Wf/W) composites without an engineered interface or inter-phase employing hot isostatic pressing (HIP) has been made in order to study the feasibility of the powder metallurgy (PM) fabrication methodology. Micro-structures and flexural properties of sintered compacts have been examined by an optical microscope (OM), a scanning electron microscope (SEM) equipped with an electron back scattering diffraction (EBSD) instrument and three-point bending (3PB) tests. There are some chrysan-themum-like grains around each fiber in W matrices. Mechanical properties, namely strength and pseudo-plasticity, of the sintered compacts are far from satisfactory. Abnormal grain growth does not seem to have a preferential growing direction according to EBSD results. Possible causes for the abnormal grain growth and further mechanical property optimizations are hereby presented.