ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
J. L. Weaver et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 194-200
IFE | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18076
Articles are hosted by Taylor and Francis Online.
Recent designs for laser driven, direct drive inertial confinement fusion (ICF) indicate that substantial gains (G>100) might be achieved with lower total laser energy (E~500 kJ) than previously considered possible. A leading contender is the shock ignition approach which compresses low aspect ratio pellets with high intensity laser pulses (1015 W/cm2) before achieving ignition with a final higher intensity spike (1016 W/cm2). Excimer laser systems based on a krypton-fluoride (KrF) medium are particularly well suited to these new ideas as they operate in the ultraviolet (248 nm), provide highly uniform illumination, possess large bandwidth (1-3 THz), and can easily exploit beam zooming to improve laser-target coupling for the final spike pulse. This paper will examine target physics advantages of KrF lasers in relation to the new implosion designs and the balancing of hydrodynamic instability and laser-plasma instabilities. Supporting experimental and theoretical studies of are being conducted by the Nike laser group at the U. S. Naval Research Laboratory. Recent experimental work has also shown that the high ablation pressures and smooth profiles obtained with the Nike laser can be used to accelerate planar targets to velocities consistent with the requirements of impact ignition.