ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
J. L. Weaver et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 194-200
IFE | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18076
Articles are hosted by Taylor and Francis Online.
Recent designs for laser driven, direct drive inertial confinement fusion (ICF) indicate that substantial gains (G>100) might be achieved with lower total laser energy (E~500 kJ) than previously considered possible. A leading contender is the shock ignition approach which compresses low aspect ratio pellets with high intensity laser pulses (1015 W/cm2) before achieving ignition with a final higher intensity spike (1016 W/cm2). Excimer laser systems based on a krypton-fluoride (KrF) medium are particularly well suited to these new ideas as they operate in the ultraviolet (248 nm), provide highly uniform illumination, possess large bandwidth (1-3 THz), and can easily exploit beam zooming to improve laser-target coupling for the final spike pulse. This paper will examine target physics advantages of KrF lasers in relation to the new implosion designs and the balancing of hydrodynamic instability and laser-plasma instabilities. Supporting experimental and theoretical studies of are being conducted by the Nike laser group at the U. S. Naval Research Laboratory. Recent experimental work has also shown that the high ablation pressures and smooth profiles obtained with the Nike laser can be used to accelerate planar targets to velocities consistent with the requirements of impact ignition.