ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. Leonard Myatt, Nicolai N. Martovetsky, Charlotte Barbier, Kevin D. Freudenberg
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 161-167
ITER | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18072
Articles are hosted by Taylor and Francis Online.
The ITER central solenoid (CS) is wound from cable-in-conduit-conductor (CICC) and cooled by supercritical Helium (He) delivered to ~120 inner diameter (ID) turns through integrally welded "inlets." The flow to each inlet splits and passes through two pancakes, exiting at outlets. While both the He supply and return points (outlets) require penetrating the conduit wall, the inlets reside in the highest stress field, and thus become the more critical structural element.The CS Conceptual Design Review (CRD) reference He inlet design has a long, narrow slot in the inside diameter (ID) turn wall with pencil-tip shaped ends. This shape is optimized in order to minimize the hoop stress concentration. The slot length is chosen to expose each of the six superconducting (SC) sub-cables to the He cooling supply. Implementing this design at 120 inlet sites requires substantial machining and welding operations where even virgin conduit has minimal structural margin.A design space exploration produces numerous inlet options. One configuration emerges as the new reference configuration: the oblong, heavy-wall boss. It addresses all of the critical issues: bi-axial stress field, pressure drop and sub-cable flow uniformity, manufacturing costs (complexities and risks) and in-service robustness (least invasive, greatest margin).Finite element (FE) simulations are presented which highlight the results of the optimization and evaluation process.