ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
R. Leonard Myatt, Nicolai N. Martovetsky, Charlotte Barbier, Kevin D. Freudenberg
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 161-167
ITER | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18072
Articles are hosted by Taylor and Francis Online.
The ITER central solenoid (CS) is wound from cable-in-conduit-conductor (CICC) and cooled by supercritical Helium (He) delivered to ~120 inner diameter (ID) turns through integrally welded "inlets." The flow to each inlet splits and passes through two pancakes, exiting at outlets. While both the He supply and return points (outlets) require penetrating the conduit wall, the inlets reside in the highest stress field, and thus become the more critical structural element.The CS Conceptual Design Review (CRD) reference He inlet design has a long, narrow slot in the inside diameter (ID) turn wall with pencil-tip shaped ends. This shape is optimized in order to minimize the hoop stress concentration. The slot length is chosen to expose each of the six superconducting (SC) sub-cables to the He cooling supply. Implementing this design at 120 inlet sites requires substantial machining and welding operations where even virgin conduit has minimal structural margin.A design space exploration produces numerous inlet options. One configuration emerges as the new reference configuration: the oblong, heavy-wall boss. It addresses all of the critical issues: bi-axial stress field, pressure drop and sub-cable flow uniformity, manufacturing costs (complexities and risks) and in-service robustness (least invasive, greatest margin).Finite element (FE) simulations are presented which highlight the results of the optimization and evaluation process.