ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
J. D. Kotulski, R. S. Coats, M. Ulrickson
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 146-150
ITER | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18069
Articles are hosted by Taylor and Francis Online.
The prediction of electromagnetic loads on blanket module 1 of the ITER device during a plasma disruption event is considered. This analysis is performed for a number of design variations (of the blanket module) and different disruption events.The key features of the analysis procedure will be presented including the geometric description of the blanket module composed of a first wall, shield block, and vacuum vessel. The modeling of the plasma current will also be described.The electromagnetic analyses are performed using the Opera-3d software. The transient eddy currents are first calculated, from which the electromagnetic loads are determined. Once these loads have been calculated they can also be exported for additional post-processing to assess the mechanical loading effects.