ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
K. Nam et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 131-135
ITER | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18067
Articles are hosted by Taylor and Francis Online.
This paper describes the fabrication of removable panel for ITER cryostat thermal shield (CTS) and its conduction cooling test at cryogenic temperature. Two kinds of full-scale mock-ups of the removable panels have been developed, depending on different thermal conduction designs. Passive cooling characteristics of the mock-ups are investigated with the measured data of temperature jump at the joint and maximum temperature at the panel. The passive cooling of panel with copper insertion satisfies the design requirement of temperature jump (< 3 K), even though the heat load condition in the cooling test is more severe than the design condition of CTS. It is clearly demonstrated that the copper strips bonded on the panel attenuate the temperature gradient of the panel. Different thermal behaviors at the joint are also found for the two mock-ups.