ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
K. Nam et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 131-135
ITER | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18067
Articles are hosted by Taylor and Francis Online.
This paper describes the fabrication of removable panel for ITER cryostat thermal shield (CTS) and its conduction cooling test at cryogenic temperature. Two kinds of full-scale mock-ups of the removable panels have been developed, depending on different thermal conduction designs. Passive cooling characteristics of the mock-ups are investigated with the measured data of temperature jump at the joint and maximum temperature at the panel. The passive cooling of panel with copper insertion satisfies the design requirement of temperature jump (< 3 K), even though the heat load condition in the cooling test is more severe than the design condition of CTS. It is clearly demonstrated that the copper strips bonded on the panel attenuate the temperature gradient of the panel. Different thermal behaviors at the joint are also found for the two mock-ups.