ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Duck-Hoi Kim et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 126-130
ITER | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18066
Articles are hosted by Taylor and Francis Online.
Since the decision of blanket redesign by 2007 ITER design review, the blanket system is being developed in the framework of Blanket Integrated Product Team (BIPT) composed mainly of ITER Organization (IO) and procuring parties. Korean Domestic Agency (KODA) is mainly contributing to the design and development of blanket Shield Block (SB). In particular, KODA is supporting the design activities including electromagnetic, thermo-hydraulic and thermo-mechanical analyses to complete the final design of blanket shield block. For the manufacturing of a blanket shield block conventional fabrication techniques based on drilling, milling and welding of stainless steel forged blocks have been adopted. As a consequence of the manufacturing feasibility study, key fabrication techniques to be verified beforehand have been identified and successfully developed in collaboration with related industries. The pre-qualification program of the fabrication and testing of Full Scale Prototype (FSP) is in progress. Until now the material development of 316L(N)-IG stainless steel forging has been successfully completed, and the fabrication of FSP is on-going. Even though the procurement of blanket First Wall (FW) was withdrawn at the 9th meeting of the ITER Management Advisory Committee, the participation of the 2nd pre-qualification program of EHF (Enhanced Heat Flux) FW small scale mock is being valid for securing core engineering technologies. At present the fabricated mock-ups are waiting for high heat flux test with the Electron Beam (EB) gun test facility being newly built in Korea. This paper provides the current status of design and relevant R&D activities of the blanket system to secure key technologies and to fulfill our promise to ITER project.