ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Neill Taylor, Carlos Alejaldre, Pierre Cortes
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 111-117
ITER | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18064
Articles are hosted by Taylor and Francis Online.
The safety documentation for ITER, including the Preliminary Safety Report, was submitted to the French nuclear safety authorities in March 2010 as part of the procedure for licensing the facility as a basic nuclear installation in France. The documents were then examined by the authorities and their technical advisors, with substantial interaction between specialists from the ITER Organization and the nuclear regulator. Finally the examination has concluded with a positive advice to grant the decree to permit the creation of ITER, and to proceed to the next stage of licensing, during which a number of ongoing commitments will have to be fulfilled.In the course of the examination of the ITER safety files, a number of technical issues were visited. These concerned the provisions in the design to mitigate potential hazards by the implementation of two safety functions: confinement of radioactive material and limitation of exposure to ionizing radiation. The robustness of the confinement systems that protect radioactive inventories had to be justified and their adequacy in all situations had to be demonstrated. Potential challenges to the confinement, even in events regarded as extremely unlikely, had to be fully analyzed. It also had to be shown that radioactive waste generated by the operation of ITER has a viable path for its safe storage and ultimate disposal.In this paper some of the key technical issues that form part of the ITER safety case are outlined, in the light of the discussions held during the regulatory examination of the files. Some of the issues outlined are the subject of ongoing actions to reach a final conclusion.