ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Paresh Patel, C. B. Sumod, D. P. Thakkar, L. N. Gupta, V. B. Patel, L. K. Bansal, K. Qureshi, V. Vadher, U. K. Baruah, N. P. Singh
Fusion Science and Technology | Volume 64 | Number 1 | July 2013 | Pages 39-44
Technical Paper | doi.org/10.13182/FST13-A17045
Articles are hosted by Taylor and Francis Online.
Regulated high-voltage power supplies (RHVPSs) have been developed at Institute for Plasma Research and utilized for neutral beam and radio-frequency heating applications of the steady-state superconducting tokamak (SST-1) up to 80-kV, 130-A rating. They were developed in-house and are being delivered to different research institutes for various applications.The RHVPS delivers power to various loads at the megawatt level. These loads have very low fault energy tolerance; therefore, fault protection is mandatory. In addition to this, at each stage of the power transformation/conversion, a special diagnosis is necessary to protect the power supply components. Also, the output fault protection has to be done in such a manner that fault energy is not more than 10 J. In fault conditions, the output has to be turned off within 2 s. Having these requirements, an output fault-protection system has been developed with suitable sensors and to manage fast turn off, choosing appropriate components.The multiple-secondary transformers (two of them, each at a 5.6 MVA rating with 40 outputs) are used at the front end of the RHVPS. They may become damaged for overload at any one of their secondaries, while remaining secondaries carry much less current or no current. Such a localized overload is not sufficient for tripping the main circuit breaker, whose tripping level is set to an actual overload of the transformer. A special technique is applied to sense and diagnose this fault in addition to routine overload sensing. Differentiation of such a typical fault from a real overload condition is done by sensing and monitoring the primary current of the transformer with reference to different operating scenarios. Electronic means are used for fast detection and isolation of the RHVPS from the utility supply. The presented system effectively protects the transformer from fault at any one of its 40 secondaries and in an actual overload situation.This paper describes an overall RHVPS power scheme along with output fault protection and an internal fault diagnosis system and test results thereof.