ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
G. L. Jackson, V. S. Chan, R. D. Stambaugh
Fusion Science and Technology | Volume 64 | Number 1 | July 2013 | Pages 8-12
Technical Paper | doi.org/10.13182/FST13-A17042
Articles are hosted by Taylor and Francis Online.
The tritium burnup fraction fburnup can strongly affect the design of a fusion reactor since it influences the size of the tritium reprocessing plant, the on-site tritium inventory, and hence, the licensing requirements and cost of the entire plant. In this paper a simple analytic expression for fburnup is derived and then applied to typical parameters proposed for three possible fusion devices: ARIES-AT, FDF, and ITER. We find that for these parameters the burnup fraction is most strongly affected by the global recycling coefficient (through the global replacement time) and the fueling efficiency. The latter term may be the most easily influenced by plant design, such as by high-field-side pellet injection, for example. Because of the hotter edge plasmas in these devices compared to present-day tokamaks, the recycling coefficient will be lower, reducing the tritium burnup fraction. While this may not adversely affect ITER, which is limited to 400-s pulses for the inductive scenario, the tritium reprocessing for nearly continuous operation of devices such as ARIES-AT must be carefully considered in the overall plant design.