ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Grzegorz Karwasz, Kamil Fedus
Fusion Science and Technology | Volume 63 | Number 3 | May 2013 | Pages 338-348
Technical Paper | Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea | doi.org/10.13182/FST13-A16440
Articles are hosted by Taylor and Francis Online.
Operation of thermonuclear reactors will require knowledge of numerous cross sections for electron interaction with atoms and molecules, largely unknown at present and difficult for experiments. Theory is needed, but first it has to be verified on laboratory-accessible targets. A few working hypotheses and systematic approaches for various electron scattering processes are recommended. We discuss briefly analogies between total cross sections for scattering on nonpolar (BF3, CO2), polar (H2O, NH3, PF3), reactive (BCl3, HCl), and hexafluoride (SF6, WF6) molecules. For partial cross sections (ionization, elastic, electronic excitation), we search for some partitioning schemes. Similarly, we treat the vibrational excitation at shape resonances in linear triatomic molecules (N2O, CO2, OCS). Electron attachment for targets such as CCl4 or CF3I rises quickly toward the zero-energy limit; semiempirical approaches fail, but new theories work well. The paper, in general, shows ways to multitask construction of cross sections rarely measured in laboratories.