ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
New work for old FLiBe? DOE considers reuse of molten salt reactor coolant
FLiBe—a mixture of lithium fluoride and beryllium fluoride—is not an off-the-shelf commodity. The Department of Energy suspects that researchers and reactor developers may have a use for the 2,000 kilograms of fluoride-based salt that once ran through the secondary coolant loop of the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory.
D. Mandal, M. Vinjamur, D. Sathiyamoorthy
Fusion Science and Technology | Volume 62 | Number 2 | October 2012 | Pages 333-338
Technical Paper | doi.org/10.13182/FST12-A14624
Articles are hosted by Taylor and Francis Online.
Angle of repose and angle of internal friction are two important macroscopic parameters in characterizing granular materials and reliable flow index in fluidization studies. This paper presents an experimental study to measure the angular properties, namely, angle of repose and angle of internal friction of lithium titanate (Li2TiO3) and silica particles. Lithium titanate is a primary contender for the solid breeder material for fusion reactors. Experimental results showed that the angle of repose of fine Li2TiO3 particles increases with increase in particle size, whereas the angle of internal friction decreases with increase in particle size. It was observed that the angle of repose varies in the range 31.7 to 35.62 deg, whereas angle of internal friction varies in the range 74.3 to 76.3 deg. A relationship between angle of repose and angle of internal friction for Li2TiO3 has been established. These results are useful to understand the flow characteristics of Li2TiO3 particles in a gas fluidized bed.