ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. Goniche, B. Frincu, A. Ekedahl, V. Petrzílka, G. Berger-By, J. Hillairet, X. Litaudon, M. Preynas, D. Voyer
Fusion Science and Technology | Volume 62 | Number 2 | October 2012 | Pages 322-332
Technical Paper | doi.org/10.13182/FST12-A14623
Articles are hosted by Taylor and Francis Online.
The coupling of lower hybrid waves from the two multijunction-type antennas installed on Tore Supra is investigated. At low power good agreement between the measurement of the power reflection coefficient and the computation with the ALOHA code is found for most cases. Details on electron density measurements, documented from embedded Langmuir probes, are discussed. At high power, departure from the linear theory is clearly seen in many cases. Ponderomotive forces depleting the electron density in a thin plasma layer in front of the antennas are likely to be responsible for the increase of power reflection coefficients measured at the input of the antennas. The decrease of the antenna directivity resulting from weaker wave coupling accounts for the experimental reduction of current drive efficiency.