ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Goniche, B. Frincu, A. Ekedahl, V. Petrzílka, G. Berger-By, J. Hillairet, X. Litaudon, M. Preynas, D. Voyer
Fusion Science and Technology | Volume 62 | Number 2 | October 2012 | Pages 322-332
Technical Paper | doi.org/10.13182/FST12-A14623
Articles are hosted by Taylor and Francis Online.
The coupling of lower hybrid waves from the two multijunction-type antennas installed on Tore Supra is investigated. At low power good agreement between the measurement of the power reflection coefficient and the computation with the ALOHA code is found for most cases. Details on electron density measurements, documented from embedded Langmuir probes, are discussed. At high power, departure from the linear theory is clearly seen in many cases. Ponderomotive forces depleting the electron density in a thin plasma layer in front of the antennas are likely to be responsible for the increase of power reflection coefficients measured at the input of the antennas. The decrease of the antenna directivity resulting from weaker wave coupling accounts for the experimental reduction of current drive efficiency.