ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
FERC rejects interconnection deal for Talen-Amazon data centers
The Federal Energy Regulatory Commission has denied plans for Talen Energy to supply additional on-site power to an Amazon Web Services’ data center campus from the neighboring Susquehanna nuclear plant in Pennsylvania.
K. Shinohara, M. Sato, H. Kawashima, K. Tsuzuki, S. Suzuki, K. Urata, N. Isei, T. Tani, K. Kikuchi, T. Shibata, H. Kimura, Y. Miura, Y. Kusama, M. Yamamoto, JFT-2M Group
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 187-196
Technical Paper | JFT-2M Tokamak | doi.org/10.13182/FST06-A1094
Articles are hosted by Taylor and Francis Online.
In JFT-2M, the toroidal magnetic field (TF) ripple was reduced by ferritic insert. Two kinds of ripple reduction were carried out. In the first case, ferritic steel was installed between the TF coil (TFC) and the vacuum vessel, just under the TFCs outside the vacuum vessel. In the second one, ferritic steel was installed inside the vacuum vessel covering almost the whole inside wall. The ripple was successfully reduced in both cases. The temperature increment on the first wall, which indicates the ripple-induced loss of fast ions, was measured by infrared television and was also reduced. The effect of the localized larger ripple was also investigated by attaching additional ferritic steel. A new version of the orbit-following Monte Carlo (OFMC) code was developed including the three-dimensional complex structure of the TF ripple and the nonaxisymmetric first-wall geometry. The experimental results and the new OFMC calculation were consistent.