ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
K. Shinohara, M. Sato, H. Kawashima, K. Tsuzuki, S. Suzuki, K. Urata, N. Isei, T. Tani, K. Kikuchi, T. Shibata, H. Kimura, Y. Miura, Y. Kusama, M. Yamamoto, JFT-2M Group
Fusion Science and Technology | Volume 49 | Number 2 | February 2006 | Pages 187-196
Technical Paper | JFT-2M Tokamak | doi.org/10.13182/FST06-A1094
Articles are hosted by Taylor and Francis Online.
In JFT-2M, the toroidal magnetic field (TF) ripple was reduced by ferritic insert. Two kinds of ripple reduction were carried out. In the first case, ferritic steel was installed between the TF coil (TFC) and the vacuum vessel, just under the TFCs outside the vacuum vessel. In the second one, ferritic steel was installed inside the vacuum vessel covering almost the whole inside wall. The ripple was successfully reduced in both cases. The temperature increment on the first wall, which indicates the ripple-induced loss of fast ions, was measured by infrared television and was also reduced. The effect of the localized larger ripple was also investigated by attaching additional ferritic steel. A new version of the orbit-following Monte Carlo (OFMC) code was developed including the three-dimensional complex structure of the TF ripple and the nonaxisymmetric first-wall geometry. The experimental results and the new OFMC calculation were consistent.