
LETTERS TO THE EDITOR 

COMMENTS O N "A SIMPLE RELATIONSHIP OF 
M A X I M U M A l e DUE TO COMPACTION OF 
UNMODERATED FISSILE MATERIALS" AND 
THE USE OF THE TROMBAY CRITICALITY 
FORMULA FOR THE SAME 

Marotta1 has proposed a simple heuristic formula to 
predict the increase in the effective multiplication factor 
resulting f rom compaction of a single, bare, spherical, 
unmoderated, homogeneous fissile system. The relation 
given by Marotta is 

kn=k0N2'3 , (1) 

where k0 and k„ are the effective multiplication factors 
before and after compact ion, respectively, and N repre-
sents the core density compaction factor. 

UNIVERSAL EMPIRICAL R E L A T I O N FOR * e f f 

The problem of variation of keff of spherical small fast 
assemblies with core radius ( R ) and density (p ) was investi-
gated in detail by us in Ref. 2. It was shown that for both 
bare and reflected constant density, fixed reflector thick-
ness, spherical hard fast systems, the variation of ke({ with 
core radius can be described by a universal empirical re-
lation (UER) as follows2: 

*eff = - exp(~0 = - e x p ( ~ e y ) ] ' < 2 a ) 

or, equivalently, 

keft=k*{\ - e x p C - S / ^ 3 ) ] , (2b) 

where is a constant that was shown to be quite close to 
kx of the core material and 0 is related to k£, through 

0 = In[*£/ (*£-1) • 

Here, Rc is critical core radius, and t is the mean-chord-
length of the core given by 4 V/S, V and S being the volume 
and surface area of the core, respectively; fcrjt is fractional 
critical mass at a given core density. The term in square 
brackets in Eqs. (2a) and (2b) represents the nonleakage 
probability of neutrons f rom the assembly. Note that the 
relation between 6 and k ^ as given above follows f rom 
the normalization condit ion that at R = Rc, keff = 1 . 

The UER has been extended to be applicable to systems 
with varying core density, using the well-known inverse 
square relationship between critical mass and core density 
for bare assemblies. It was shown in the context of micro-
fission systems [see Eq. (4) of Ref. 2] that 

= . (3) 

The product Rp is a measure of the surface mass density a, 
i.e., mass per unit surface area of the core, Rc0 is the critical 
core radius at density p 0 , and a c pertains to the bare critical 
system and is a constant characteristic of the core com-
position and is independent of density. Thus a c — 324 
kg/m 2 for 239Pu metal systems, 301 kg/m2 fo r 2 3 9 P u 0 2 

systems, and ~ 5 3 0 kg/m 2 fo r enriched 2 3 5U assemblies. 
The importance of Rp (or a) as an index of reactivity 

was also noted by Marotta and, in fact , forms the basis of 
his Note. However, whereas Marotta assumed kef{ « pR, 
the actual relationship between keff and pR is more cor-
rectly described by Eq. (3). The form of Eq. (3) ensures 
that whatever the value of Rp (or a), keff can never exceed 
k*,. This feature is responsible for the elimination of the 
limitations posed by neglect of what Marotta refers to as 
"surface leakage" term. Equation (3) is therefore free of 
any restrictions on density such as (J?/&0)3/2 specified in 
Ref. 1. 

When the mass of the system undergoing compaction 
is conserved, 

R0 \ P / N1/3 ' 

where R0 is initial core radius before compaction. Using 
relation (4), Eq. (3) can be writ ten as 

kn = * * | l = - e x p ( - 0 j j f i j v ^ , 

(5a) 

or, equivalently, 

kn = k ^ n - e x p i - d f & r N 2 ' 3 ) } . (5b) 

Here, a 0 and /c°rit are the surface mass density and frac-
tional critical mass at the initial core density of p0. Prior 
to compaction, since N is uni ty, we get f rom Eq. (5a) 

* 0 = * i [ i • ( 6 ) 



From Eqs. (5a) and (6), it follows that 

Ro i _ ex .p i~ o 

kn — ka 
Rc 

N2 

1 - e x p ( -
Rr 

(7) 

Equation (7) can be simplified if the arguments of expo-
nentials in the numerator and denominator are assumed to 
be small compared to unity. Using Taylor series expansion 
and retaining only up to first-order terms, we obtain 

kn k0 H- Kco / 
- V 1 

Rco) _ 

k0N• (8) 

This is seen to be identical to Eq. (1), the relation derived 
by Marotta. Thus, Marotta's relation may be looked upon 
as a linear approximation to Eq. (7). The derivation of 
Eq. (8) f rom Eq. (7) clearly brings out the more general 
applicability of the UER propounded by the authors. 

CRIT ICAL COMPRESSION FACTOR, /Vcrit 

If one is interested in calculating the critical compres-
sion factor NCIn only, it may simply be obtained f rom the 
relation 

M0P2 = Mc0p2
0 

TABLE I 

Variation of A:eff of an Initially Critical Bare 16.2-kg 
Plutonium Metal Sphere with Compaction 

Compression, 
KENO 

A 
(UER) 

B 
(Marotta) 

1.00 1.002b 

±0.007 
1.002 1.002 

1.05 1.031 
±0.009 

1.028 1.035 

1.10 1.051 
±0.008 

1.054 1.068 

1.25 1.114 
±0.009 

1.126 1.163 

1.50 1.250 
±0.009 

1.235 1.313 

1.75 1.340 
±0.008 

1.332 1.455 

2.00 1.452 
±0.009 

1.419 1.590 

a F o r convenience, we have considered the same values of 
compression, N, as Marotta. 

b Jezebel system; radius = 0.0631 m, density = 1.54 X 104 

kg/m3 , and a c = 324 kg/m2 . 

_P = 

Po 
(9) 

Here, M0 is the mass of the assembly undergoing compac-
tion, and Mc0 is the critical mass at the initial density p0. 
Equation (9) is an identity, since it follows directly f rom 
the inverse square variation of critical mass with density, 
which is o f ten referred to as a basic law of criticality phys-
ics.3 Since Eq. (5a) incorporates this law, it also reduces 
to Eq. (9) at critical, thus predicting the correct compres-
sion value. 

RESULTS 

The ktft- computed using the UER for the cases con-
sidered by Marotta are presented in Tables I, II, and III 
along with Marotta 's results. Two approaches have been 
adopted for this: In approach A, the keff's are computed 
using Eq. (5a) with Rc0 deduced from published critical 
mass data. The k*^ values for the cores have been taken 
f rom Ref. 2. In approach B, £eff is taken as equal to R/Rc, 
and Eq. (10) is used to compute kn as a funct ion of N. 
Details of this method are explained later. When the initial 
reference system is critical, approach B becomes identical to 
Marotta 's method. The kttf at which normalization is done 
either to transport theory results (KENO/ANISN/DTF-IV) 
or experimental critical data in each of the approaches is 
underlined in the tables. Wherever transport theory cal-
culated critical compression is not available, NCI-n has been 
obtained f rom Eq. (9). 

It can be seen from Table I, which pertains to super-
critical cases, that ktif's calculated by UER (approach A) 
are in most cases within KENO statistics and show bet ter 
agreement with it than that given by Marotta 's relation. 

TABLE II 

The &eff's of Highly Subcritical Bare 2.0-kg P u 0 2 

Spheres at Different Densities 

Compression, 
KENO 

A, 
Eq. (5a) 
(UER) 

B, 
Eq. (10) 
(Linear) 

Marotta, 
E q . ( l ) 

(Linear) 

1.00b 0.169 
±0.002 

0.213 0.180 0.169 

1.05 0.172 
±0.003 

0.220 0.186 0.174 

1.10 0.176 
±0.002 

0.227 0.192 0.178 

1.25 0.195 
±0.002 

0.246 0.209 0.196 

1.50 0.220 
±0.003 

0.276 0.236 0.221 

1.75 0.248 
±0.004 

0 .304 0.261 0.245 

2.00 0.268 
±0.004 

0.331 0.286 0.268 

13.1° 
(Went) (1.00) 1.000° 1.000° 0.939 

a F o r convenience, we have considered the same values of 
compression, N, as Marotta. 

bInitial P u 0 2 density = 3.0 X 10 3 kg /m 3 . 
c a c of P u 0 2 = 301 kg/m2 . 



TABLE III 

The /teff of Thinly Reflected P u 0 2 Cylinders of Various Masses and Densities 

Core Density, 
(XI0"3) 
(kg/m3) 

Core Mass, 
M 

(kg) 

/crit 
at Density 

P KENO 

A, 
Eq. (5a)a 

(UER) 

B, 
Eq. (10) 
(Linear) 

Marotta, 
Eq. (1) 
(Linear) 

1.8 8.687 0.0091 0.226 0.246 0 .209 0.226 

2.0 8.687 0.0112 0.238 0.263 0 .224 0.242 

3.0 8.779 0 .0255 0 .318 0.340 0 .294 0.318 

3.45 8.779 0 .0338 0.353 0.371 0.323 0.349 

5.0 8.298 0 .0670 0.438 0.459 0.406 0.438 

5.8 8.298 0 .0902 0.484 0.502 0.448 0.484 

11.5 12.000 0 .5130 0.833 0.834 0.801 0.833 

12.0 12.000 0 .5580 0.854 0.854 0.823 0.856 

12.0 21.5 a 1.0000 (1.000) 1,000a 1,000a 1.083) 
1.079 ( 
1.0781 
1 .040/ 

a a c = 235 kg/m 2 for a cylinder with an H/D ratio of 3.0 with a stainless-steel reflector 0 .0127 m thick. 

In Table II, it is seen that Marotta 's relation gives results 
that are in reasonably good agreement with KENO in the 
highly subcritical region of /ceff < 0.3, since it is normalized 
to the initial KENO keff value of 0.169. However, ktff at 
critical compression given by Marotta 's relation is seen 
to be qui te inaccurate. 

Table III gives the A:eff values for the cylindrical P u 0 2 

cores of Marotta 's Note having masses between 8 and 12 kg 
and densities varying f rom 1.8 X 103 to 1.2 X 104 kg/m3 . 
These subcritical cases were considered by Marotta in pairs 
differing by not more than 20% in density, since Eq. (1) has 
limited applicability only. It is presumed that the H/D ratio 
of the cylinder was maintained constant by Marotta during 
compact ion. a It was demonstrated in Ref. 2 that UER is 
also valid for highly elongated or pancaked cylinders, pro-
vided the H/D ratio is maintained constant during density 
changes. We have deduced the A;eff of all the cases starting 
f rom a critical mass value of (21.5 ± 0.05) kg at a density of 
1.2 X 104 kg/m3 . The critical ac value of 235 kg/m2 was 
derived f rom KENO keK data by plotting - 1)] 
against a on semilog paper, as suggested by Eq. (3), and 
extrapolating to [&£,/(££ - 1.0)]. The value of was 
taken f rom Ref. 2 as 2.88 valid for hard fast plutonium 
cores. The deduced a c value of 235 kg/m 2 is lower than the 
standard P u 0 2 figure of 301 kg/m2 presumably because the 
system under consideration is not a bare sphere, but a 
cylinder having a 0.0127-m-thick stainless-steel reflector. 
The Jeff's at the core density of 12.0 kg/m2 corresponding 
to a critical mass of 21.5 kg given by Marotta 's relation 
starting with k0 values of 0.226, 0 .318, 0.438, and 0.833 
are also presented in the lower right corner of Table III. 

a Incidentally, the inside height of 0.762 m quoted in Ref. 1 is incon-
sistent with the inside diameter of 0.127 m for the initial 8.687-kg 
system at density = 1.8 X 103 kg/m3. It would seem that the actual 
height used in KENO computations was probably 0.381 m, which is 
half the quoted height. This will then yield a height-to-diameter 
(H/D) ratio of 3.0. 

It may be observed that as the k0 used for normalization 
approaches unity, the accuracy of Areff at critical also im-
proves. However, even starting with a k0 of 0 .833, Marotta 's 
relation is seen to overpredict ktff at critical by 40 mk. 

The fact that UER consistently overpredicts Aeff in the 
highly subcritical region was also noted earlier.2 The reason 
for this was discussed and possible remedies were sought in 
Ref. 2. Interestingly, in this context , it was observed that 
the ratio R/Rc, R and Rc being at the same core density, 
directly gives A'eft- within 10% accuracy in the highly sub-
critical region for small hard fast systems a. It so happens 
that a linear "approx imat ion" gives reasonably accurate 
&eff values in the far subcritical region in spite of the fact 
that neglect of higher order terms in the Taylor series 
expansion of Eq. (7) may not be valid f rom an algebraic 
point of view. This stems f rom an inherent drawback of 
UER, which is compensated for in the linear approximation. 
This is also the reason for the limited success of Marotta's 
relation in the highly subcritical region. 

Linear representation of Aeff directly as R/Rc leads to 
the following relation for kn in terms of /V: 

= • d o ) 
K Rc o 

The main difference between Eq. (10) and Marotta's 
relation Eq. (1), which is also a linear approximation, is 
that while the latter is normalized at the initial subcritical 
ksff value of k0, the former is normalized at critical. This 
ensures that Eq. (10) would also reduce to Eq. (9), the 
identity giving the correct critical compression (iVerjt) 
value. For the same reason, close to critical, Eq. (10) also 
gives keff more accurately than that given by Marotta's 
relation. The advantages of normalization at critical there-
fore cannot be overemphasized. 

Thus, in summary, just as Marotta 's relation [Eq. (1)] 
is a linear approximation of Eq. (7), Eq. (10) is a linear 
version of the UER [Eq. (5a)]. It is recommended that , in 



general, Eq. (5a) may be used confidently for purposes of 
estimation of reactivity increase due to uniform compact ion 
of unmoderated fissile materials, since it is based on critical 
mass data (either experimental or accurately computed) 
and is valid for large density changes. In the highly sub-
critical region, however, even Eq. (10) may be reasonably 
accurate. Both Eqs. (5a) and (10) give correct A / C I j , values. 

WIGNER R A T I O N A L APPROXIMATION FOR 
LEAKAGE PROBABILITY 

The Wigner rational (WR) approximation is of ten used4 

for computing fast-neutron leakage probability from sys-
tems having a uniformly distributed neutron source. Since 
source distribution may not be far f rom uniform in small 
hard fast systems whose dimensions are on the order of a 
neutron mean-free-path, it is tempting to apply the WR 
approximation to such systems owing to its inherent sim-
plicity. In this approximation, leakage probability, 
can be represented by 

, WR _ 1 
1 +yl 

(11) 

where 7 is a constant that is characteristic of the neutron 
energy spectrum in the system and / is mean-chord-length 
of the system. The fcet-f of the system can then be expressed 
by 

W R , ki 

or, equivalently, 

c= 
e f f + (** - i M / ? r i t ^ T 

(12) 

In the above derivation, - 1 )lc]~l may be identified 
with 7 and determined from the condition that at I = lc, 
&eff = 1, under the assumption that neutron energy spectrum 
does not change significantly when the system size is 
altered. We have studied the validity of the WR approxima-
tion for small hard fast systems.5 The keff's for all the cases 
of Tables I, II, and III were computed using Eq. (12). It was 
observed that the WR approximation also gives /ceff's that 
are overpredicted in the subcritical region and underpre-
dicted in the supercritical region similar to UER, but the 
discrepancies are, on the whole, much larger in all cases 
studied. The k* values used in these computat ions were 
the same as for the corresponding UER calculations. 

T R O M B A Y C R I T I C A L I T Y FORMULA 

Thus far, the discussion has been confined to bare 
systems only. However, it was demonstrated in Ref. 2 that 
the empirical relation and its variations are valid as such for 
reflected systems as well, provided the reflector thickness 
measured in units of neutron mean-free-path is maintained 
constant whenever reflector density is varied. If this con-
dition is satisfied, then all the formulas given in the Letter 
may be applied to reflected systems, also under the stipula-
tion that both core and reflector densities are changed 
simultaneously by the same factor N. These concepts have 
since been extended to the case of reflected small fast sys-
tems whose core and reflector densities are changed by large 

and unequal amounts through the use of an integrated ver-
sion of Los Alamos density exponent formula 6 (ILADEF) 
derived by the authors. Situations wherein core shape 
changes to any arbitrary nonreentrant geometry are treated 
in Ref. 7, which gives appropriate formulas to compute 
shape factors and £eff 's therefrom. Thus, the cylindrical 
cores of Table III could be dealt with even if their H/D 
ratio were to vary arbitrarily during compaction. 

In fact, it has recently been shown by us that Eqs. (3) 
and (5a) are special cases of an even more general criticality 
relation referred to as the Trombay Criticality Formula 8 

(TCF). The underlying physical basis of this formula is the 
postulate that mean-chord-length of the core ( / ) , measured 
in units of neutron mean-free-paths relative to its value for 
the corresponding critical system (lc), essentially determines 
net neutron leakage and hence system A;eff. The TCF com-
bines the basic concepts developed in Refs. 2, 5, 6, and 7 to 
give a very general and useful criticality formula that en-
ables calculation of Ael-f of small fast reflected assemblies 
having cores of any uniform density and nonreentrant 
shape, the only input data requirement being spherical 
critical surface mass density a c along with the system 
geometrical parameters. 

Anil Kumar 
M. Srinivasan 

Bhabha Atomic Research Centre 
Neutron Physics Division 
Trombay, Bombay 400 085, India 

December 1, 1978 
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