Letters to the Editor

Comments on "Anisotropic Scattering Coefficients in the Constant Cross-Section Transport Equation"

In a recent paper¹, Murray et al. have calculated the coefficient of the scattering function in the laboratory system assuming isotropic (elastic slowing down) collisions in the center-of-mass system. It is immediately apparent that their coefficient b_L is identical with the matrix T_{LO} defined by Zweifel and Hurwitz². In particular, the computation scheme suggested by them for calculating the explicit form of T_{LO} (or the b_L) seems somewhat simpler than that proposed by Murray et al.¹. The scheme of

¹RAYMOND L. MURRAY, CHARLES E. SIEWERT, and WALTER J. HARRINGTON, *Nucl. Sci. Eng.*, 28, 124 (1967).

²P. F. ZWEIFEL and H. HURWITZ, Jr., J. Appl. Phys., 25, 1291 (1954). See also JOEL H. FERZIGER and P. F. ZWEIFEL, The Theory of Neutron Slowing Down in Reactors, pp. 55 ff, Pergamon Press, Oxford (1966).

Zweifel and Hurwitz² expresses
$$T_{IO}$$
 as

$$T_{LO} = \frac{(1+\gamma)^2}{2\gamma} \int_0^{\ln 1/\alpha} \exp(-v) P_L \left(\frac{1}{2\gamma} \left[(1+\gamma) \exp(-v/2) - (1-\gamma) \exp(v/2) \right] \right) dv \quad .$$
 (1)

Thus, any of the T_{LO} may be calculated as the sum of simple exponential integrals [in Eq. (1), $\gamma = 1/A$].

The work by Murray et al.¹ has the distinct advantage that it gives an explicit expression for T_{LO} [Eq. (11)], as well as convenient expressions in powers of γ . It may be mentioned that similar coefficients have been tabulated also in ANL-5800.

P. F. Zweifel

Department of Nuclear Engineering The University of Michigan Ann Arbor, Michigan April 5, 1967