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and 9 to give the same result.) If equation 2 is not 
satisfied by the approximate spectra, it seems 
reasonable to use equation 6 in preference to 
equation 9, since equation 6, obtained by integrating 
over equation 2, preserves the current. It is 
emphasized that if the flux spectrum is spatially 
dependent, the proper weight function for the 
parallel averaging procedure, equation 6, is the 
gradient of the flux, and not the flux it self. For 
multidimensional problems this will, in general, 
lead to an anisotropic diffusion coefficient. 

For completeness, we show how one can arrive 
at another averaging scheme often quoted in the 
literature—that of averaging the reciprocal of the 
transport cross section in a homogeneous region 
over the Laplacian of the flux. Using equation 2 in 
equation 1, we find for the leakage term in a 
homogeneous region 

1 Leakage = 3 S t g ( £ ) V </>(r,£). (17) 

Equating the integral over energy of equation 17 to 
the i th group leakage term yields 

(Leakage),- = -

where we have defined 

Z t r (E) 
V2$'(r) , (18) 

S t r (E) 

_ J^i^k) v20 (r,E) 

f.dEV2(t>(79E) 
(19) 

Equation 19 indeed indicates that one should 
average the reciprocal of the transport cross 
section over the Laplacian of the flux. We note 
that this type of average leads to a simpler result 
than equation 6 in that the group-averaged diffusion 
coefficient is isotropic. This simplicity is obtained 
at the expense of accuracy—i.e., equation 19 was 
derived by integrating over the net leakage term, 
thus preserving the divergence of the current, 
whereas equation 6 was derived by integrating over 
Fick's law, equation 2, thus preserving the current 
itself. Accordingly, a priori one should expect that 
equation 6, which preserves more detailed quanti-
ties, will yield better over-all results than equation 
19. If one is only interested in computing the group 
fluxes, both averaging procedures should be equally 
accurate since it is only the divergence of the 
current that enters into the calculation. If, how-
ever, one wishes to compute the group currents, 
then the use of equation 6 should yield more 
accurate results. It is interesting to note that the 
group-averaged diffusion coefficient defined by 
equation 19 is properly a multiplier of the 
Laplacian in equation 18, even though, in general, 

equation 19 will lead to a spatially dependent 
quantity. If equation 6 or equation 9 is used, the 
diffusion coefficient is acted upon by the diver-
gence operator in computing the net leakage. 

It is hoped that the foregoing remarks may be 
of some help in comparing the bases for the 
various averaging procedures suggested in the 
literature. 
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Generalizations of Fick's Law 

Using the one-velocity Boltzmann equation for 
slab geometry and a homogeneous isotropic me-
dium, Adler1 derived a relationship between the 
net current J(z) and the neutron density N(z), 

v d 
S/r dz U 8 ( * ) * ( * ) ] 

J H n(z,ii)djx 
fin(z,n)dn 

•• z-lToXs 

( 1 ) 

(2) 

(3) 
where \i2 (z) is the mean square cosine of the 
angular distribution and JT0 is the mean cosine of 
the scattering angle. Equation (1) is a one-velocity 
generalization of Fick's law. 

The one-velocity restriction on Equation (1) can 
be removed by considering the velocity-dependent 
Boltzmann equation 

dt -vzy -kn + JJJn(z,vr,(jJ,t)vr Yls(v^->$dvtdut 

(4) 
where n(z9v9^t)dVdvd^ is the number of neu-
trons in dV at whose speeds are in dv at v 
and whose directions of motion lie in the solid 
angle do) at cv at time t. The term k = v?, is 
the collision rate per neutron. If we assume that 
the cross section for velocity change -*v) 
depends only on the initial speed v\ the final 
speed v, and u>''o;, then 

1F. ADLER, in Reactor Handbook, (H. SOODAK, ed.), 
AECD-3645, Vol. I, p. 385. United States Atomic Energy 
Commission (1955); Reactor Handbook (H. SOODAK, ed.), 
Vol. Ill, P a r t A, p. 140. Interscience Publishers, New York 
(1962). 
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J J J v d v d w = v'a(v') Ss(w') (5) 

where vra(vr) is the mean component of velocity 
of the scattered neutron along the original direction 
of motion. If the speed is not changed by the 
collision, as in the one-velocity Boltzmann equa-
tion, then a =]T0 . 

A derivation of a generalization of Equation (1) 
from Equation (4) is obtained by noting that the 
pressure exerted by neutrons at z is given by 

P(z) = mfjfvz2ndvdu (6) 

where m is the mass of a neutron. Thus, 
multiplying Equation (4) by vz = juv, integrating 
over all speeds and angles, and using Equation (5) 
we obtain a relation between the neutron pressure 
and net current 

±dP -t T 
dt~~ mdz~ "tr d 

where J{z) = ffJvzndvdoi) 

- fffvzn[k - aks]dv dot 

tT ̂  ^ IffVzU dv 

In the steady state, Equation (7) reduces to 

(7) 

J{z) = - 1 dP 
m^ktr{z) dz (8) 

which resembles the equation of Knudsen flow2. 
Combining Equation (8) with the mean square 

component of velocity at position z defined by 

VZ (z) 
P(z) fffvz2ndvdw 

m 
(9) 

J = -
v dN 

3 2 / r dz (13) 

2E. H. KENNARD, Kinetic Theory of Gases, p. 304. 
McGraw-Hill, New York, (1938). 

if the angular distribution is approximately iso-
tropic. 

Equations (1) and (11) can be used in cases that 
are beyond the validity of Fick's law. For example 
let us consider a mono - energetic unidirectional 
plane neutron source at >2 = 0 supplying S neutron 
per cm2 per second in the ^-direction in a purely 
absorbing medium. Since Za is not considerably 
smaller than 2 S , Fick's law is not applicable, but 
we can still use Equation (1) or (11). Here vz2 = 

so that they reduce to 

j , v dN 
2a dz (14) 

Combining Equation (14) with the neutron-conser-
vation equation 

we obtain 

+ 0, 

N{z) =- exp [ - 2 * * ] . 

(15) 

(16) 

The derivation of this well known result demon-
strates the extended validity of these generalized 
forms of Fick's law. 

Next we consider the neutron density generated 
by a distant plane neutron source producing S 
neutrons per cm2 per second in a non-absorbing 
homogeneous medium filling the half-space z ^ 0. 
Let us treat the one-velocity case. If we apply 
Fick's law (13) to this problem we have 

N(z) f f f n d v d u 

where N{z) =JJf ndvdv, (10) 

we obtain a generalization of Equation (1) which is 
not limited by the one-velocity restriction. 

J(z) = - j- [77{z) N(z)]. (11) 
ktr(z) dz 

If the neutron distribution is isotropic then vz = 
vx2 = vy2, and since vx2 + vy2 + vz2 = v2, we have 
U 2̂ = t>2/3. In the one-velocity case the transport 
collision rate ktr(z) reduces to 

ktr = v £/r = v[L - | i 0 L s ] . (12) 

Thus, Equation (11) reduces to Equation (1), which 
in turn reduces to Fick's law 

3 S S / r 

N(z) = — [z + a] (17) 

where a is a constant of integration. This result 
states that the density decreases linearly as the 
boundary is approached. Now applying Equation 
(1) to this problem we obtain 

N(z) 1 S 

i^iz) 
[z + a]. (18) 

When z is not near the boundary, the angular 
distribution of neutrons is approximately isotropic 

so that [i2 = and Equations (17) and (18) agree. 

When we approach the boundary the angular distri-
bution becomes peaked in the direction towards 
the boundary and consequently fi2(z) increases. 
The result (Equation (18)) states that if n2(z) 
increases, the density N(z) decreases more 
sharply than Equation (17) near the surface of the 
medium. This simple qualitative argument agrees 
with exact transport-theory calculations. 

In the above example the well known fact that 
(j.2 is not 1/3 near the boundary implied a sharp 
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density decrease in this region. The argument 
may be reversed so that a knowledge of the neutron 
density N{z) yields an immediate calculation of 
H2(z). Combining the expression for the asymp-
totic neutron density, 

3 S S 
Nas(z) = — [z + a] (19) 

TABLE I 

Mean Square Cosine of the Angular Distribution 

A*) = Nas(z)/3N(z) 

0.0 .410 

0.05 .384 

0.1 .371 

0.2 .357 

0.5 .342 

1.0 .336 

2 .0 .334 

3.0 .333 

with Equation (18), we obtain 

! Nas(z) 
( 2 0 ) 

Values of ~IJ?(Z) calculated from Nas{z) and N{z) 
given by Mark3 are shown in Table I. 

Thus, a generalization of Adler's form of Fick's 
law which uses the concept of neutron pressure 
has been derived, and several simple examples 
have been given to show that Equations (1) and (11) 
are generalizations of Fick's law which possess 
its simplicity and have a wider range of validity. 
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