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On the Energy Averaging of the 
Diffusion Coefficient 

For several years there has been much discus-
sion on the proper manner in which to energy 
average the diffusion coefficient for use in multi-
group diffusion theory. In particular, the argument 
has centered around whether one should average 
the diffusion coefficient or the reciprocal of the 
diffusion coefficient, i.e., the transport cross 
section. For example, Weinberg and Wigner1 and 
earlier workers have shown that if the flux is 
separable in space and energy, then the correct 
procedure is to average the diffusion coefficient 
with respect to the separable spectrum. On the 
other hand, Sjostrand2 has shown, using a separa-
bility assumption, that the correct procedure is to 
average the transport cross section with respect 
to the separable spectrum. In this note we make a 
few observations in the hope of shedding some 
light on this general problem. In particular, we 
discuss the apparent paradox between the result of 
Weinberg and Wigner and that of Sjostrand. 

If one expands the transport equation in a low-
order (P-l) spherical-harmonic series, making 
use of the transport cross section to account for 
P - l scattering, one obtains the simple energy-
dependent diffusion approximation, i.e., the con-
servation equation 

= f°°dE'Xs(r,E'^E)4)(7,E')+ S(7), (1) 
J o 

and Fick's law of diffusion 

1K E) = V<j>(r,E), (2) 
32tr (r,E) 

where, for simplicity, we have assumed a time-
independent problem with no fission. (These as-
sumptions in no way affect the arguments to be 
made.) In equations 1 and 2, 

r is the spatial coordinate, 
E is the energy coordinate, 

\p{r,E) is the scalar flux per unit energy, 
j{r,E) is the current per unit energy, 
£(r, E) is the macroscopic collision cross 

section, 
E s(r , £ r -+E) is the macroscopic differential-

scattering cross section, 
2 t r ( r , £ ) is the macroscopic transport 

cross section, and 
S( r) is the external source. 
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Integrating the s(s = s,3>,2) component of equation 
2 over the ith group yields 

J's(r) = - 1 
S t t (r ) 

3<f>/ds 

where we have defined the ith group flux and s 
component of the ith group current as 

dE<p{7,E), (4) 
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Thus we see that we obtain a parallel average of 
Etr with respect to the gradient of the flux. It is 
emphasized here that no approximations (i.e., 
separability) have been introduced. 

Equally well, equation 2 can be written 

3Zu(r,E)j(r,E) + V 0 ( r , E ) « 0. (7) 
Integrating the s component of equation 7 over the 
ith group yields 

where we have defined 

fdEZtt(r,E)js(r,E) 
[Strtf] ;* * 

f.dEjs(r,E) 

(8) 

(9) 

Equation 9 indicates that one should series average 
Etr with respect to the current. Again no ap-
proximations have been made. 

Now, comparing equations 3 and 8, we deduce 

- V = l / [2 t r ( r ) ] ! 5 , (10) 
LStrOOj,. 

i.e., the average of the reciprocal of the transport 
cross section with respect to the gradient of the 
exact flux solution of equations 1 and 2 is precisely 
equal to the reciprocal of the average of the 
transport cross section with respect to the exact 
current solution of equations 1 and 2. Equation 10 
can also directly be shown to be an identity by 
using equation 2 (Fick's law) in the right side of 
equation 9 to eliminate j s { r l E ) in favor of 

^ d s ^ # T h e r e s u ^ i s t h e r e c i P r o c a l o f the 

right side of equation 6. Thus, if one has available 
the exact solution of equations 1 and 2, one can 
either parallel or series average Str according 
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to equation 6 or equation 9. Both equations give 
the same result. The multigroup diffusion equa-
tions, with these values of the group-average 
diffusion coefficients, will then yield an exact 
solution of equations 1 and 2 for the group fluxes 
and currents. 

However, if one has available the exact solution 
of equations 1 and 2 for $(r,E) and j(r,E), then 
one can directly compute all the details of the 
system being studied, and there is no need to 
consider the multigroup equations. In general, one 
performs an approximate calculation to obtain the 
spectrum from which the multigroup constants are 
obtained. The crudest (and most commonly used) 
method is to assume that the energy dependence of 
the flux and current is separable from the spatial 
dependence. One then performs a zero-dimen-
sional calculation to obtain this energy dependence. 

We now come to the apparent paradox between 
the conclusion of Weinberg and Wigner and that of 
Sjostrand. The significant point here is that one 
must define precisely what is meant by space-
energy separation. Weinberg and Wigner write 

0 ( r ,E)= </>(7)/(£). (11) 

From equations 2 and 11, the following proportion-
alities, in the energy variable, are evident: 

V0 ~f{E), (12) 

Str (r,E) 
We note that the flux and current have different 
energy dependences. Using equation 12 in equation 
6, we deduce that one should parallel average the 
transport cross section with respect to the flux 
spectrum, /(E)—i.e., one should series average 
the diffusion coefficient. Using equation 13 in 
equation 9, we again draw the same conclusion. 

Sjostrand assumes that the transport directional 
flux is separable according to 

<j>(7,n,E)=<t>(7,n)g(E). (14) 

Here, in the energy variable, the proportionalities 
that follow are 

V0 ~ g ( E ) , (15) 

7 ~g(E)'.% (16) 

We note that the flux and current have the same 
energy dependence. Using equation 15 in equation 
6, we deduce that one should parallel average Etr 
with respect to g(E), whereas, using equation 16 
in equation 9, we deduce that one should series 
average S t r with respect to g{E)4 Thus with 
Sjostrand's assumed separability, one is able to 
arrive at either conclusion. In his paper, Sjostrand 
arrived at the series average of Ztr. We conclude 

that Sjostrand's assumption can only be strictly 
true if both averaging procedures yield identical 
results, which in general implies that the transport 
cross section is energy independent. 

We finally come to the question of which 
averaging procedure should be used in practice. 
Since the assumption of Weinberg and Wigner 
always leads to the same conclusion, whereas that 
of Sjostrand does not, it seems reasonable that, 
a priori, Weinberg and Wigner's scheme should be 
used, i.e., one should parallel average 2/tr • 
Moreover, it is clear that Sjostrand's separability 
assumption is far more restrictive than that of 
Weinberg and Wigner. Sjostrand assumes that all 
of the angular modes of the directional flux have a 
common, separable energy dependence. Weinberg 
and Wigner merely claim that the zeroth mode 
(scalar flux) has a separable energy dependence. 
For example, it is a well known fact that the 
diffusion-theory solution of the homogeneous bare 
core (with a negligible extrapolation distance) is 
indeed separable according to equation 11 for an 
arbitrary energy dependence of the transport cross 
section. The corresponding angular flux, truncated 
to the diffusion - theory approximation, is not 
separable—i.e., equation 14 does not hold. Said 
another way: if energy-dependent diffusion theory 
is assumed to describe the system adequately, then 
equation 2 immediately indicates that the spectrum 
of the current must, in general, be different from 
that of the flux, contrary to equation 14. Thus, 
Sjostrand's separability assumption is incompat-
ible with energy - dependent diffusion theory. 
Another argument in favor of the parallel average 
of Str is that it is obtained by integrating over 
equation 2, thus preserving the current. 

Of course, when the flux is not separable in any 
sense, it may well be that in certain instances a 
series average of £ t r may lead to more accurate 
results than a parallel average. Which scheme to 
use in a particular instance will depend upon the 
problem under consideration and the assumptions 
used in computing the separable spectrum, as well 
as the particular quantities of interest from the 
multigroup solution. Without any a priori knowl-
edge of the problem to be solved, however, the 
'best strategy' seems to be a parallel average of 
the transport cross section. 

If one is not satisfied with the separability 
assumption and computes approximate spatially-
dependent flux and current spectra, these spectra 
will not, in general, satisfy equation 2. Thus 
equations 6 and 9 will yield different results. As 
the spectra used approach the exact spectra, 
equation 2 will be satisfied, and in this limit the 
two averaging schemes will give the same result. 
(We note that any spectra, no matter how inaccu-
rate, that satisfy equation 2 will force equations 6 
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and 9 to give the same result.) If equation 2 is not 
satisfied by the approximate spectra, it seems 
reasonable to use equation 6 in preference to 
equation 9, since equation 6, obtained by integrating 
over equation 2, preserves the current. It is 
emphasized that if the flux spectrum is spatially 
dependent, the proper weight function for the 
parallel averaging procedure, equation 6, is the 
gradient of the flux, and not the flux it self. For 
multidimensional problems this will, in general, 
lead to an anisotropic diffusion coefficient. 

For completeness, we show how one can arrive 
at another averaging scheme often quoted in the 
literature—that of averaging the reciprocal of the 
transport cross section in a homogeneous region 
over the Laplacian of the flux. Using equation 2 in 
equation 1, we find for the leakage term in a 
homogeneous region 

1 Leakage = 3 S t g ( £ ) V </>(r,£). (17) 

Equating the integral over energy of equation 17 to 
the i th group leakage term yields 

(Leakage),- = -

where we have defined 

Z t r (E) 
V2$'(r) , (18) 

S t r (E) 

_ J^i^k) v20 (r,E) 

f.dEV2(t>(79E) 
(19) 

Equation 19 indeed indicates that one should 
average the reciprocal of the transport cross 
section over the Laplacian of the flux. We note 
that this type of average leads to a simpler result 
than equation 6 in that the group-averaged diffusion 
coefficient is isotropic. This simplicity is obtained 
at the expense of accuracy—i.e., equation 19 was 
derived by integrating over the net leakage term, 
thus preserving the divergence of the current, 
whereas equation 6 was derived by integrating over 
Fick's law, equation 2, thus preserving the current 
itself. Accordingly, a priori one should expect that 
equation 6, which preserves more detailed quanti-
ties, will yield better over-all results than equation 
19. If one is only interested in computing the group 
fluxes, both averaging procedures should be equally 
accurate since it is only the divergence of the 
current that enters into the calculation. If, how-
ever, one wishes to compute the group currents, 
then the use of equation 6 should yield more 
accurate results. It is interesting to note that the 
group-averaged diffusion coefficient defined by 
equation 19 is properly a multiplier of the 
Laplacian in equation 18, even though, in general, 

equation 19 will lead to a spatially dependent 
quantity. If equation 6 or equation 9 is used, the 
diffusion coefficient is acted upon by the diver-
gence operator in computing the net leakage. 

It is hoped that the foregoing remarks may be 
of some help in comparing the bases for the 
various averaging procedures suggested in the 
literature. 
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Generalizations of Fick's Law 

Using the one-velocity Boltzmann equation for 
slab geometry and a homogeneous isotropic me-
dium, Adler1 derived a relationship between the 
net current J(z) and the neutron density N(z), 

v d 
S/r dz U 8 ( * ) * ( * ) ] 

J H n(z,ii)djx 
fin(z,n)dn 

•• z-lToXs 

( 1 ) 

(2) 

(3) 
where \i2 (z) is the mean square cosine of the 
angular distribution and JT0 is the mean cosine of 
the scattering angle. Equation (1) is a one-velocity 
generalization of Fick's law. 

The one-velocity restriction on Equation (1) can 
be removed by considering the velocity-dependent 
Boltzmann equation 

dt -vzy -kn + JJJn(z,vr,(jJ,t)vr Yls(v^->$dvtdut 

(4) 
where n(z9v9^t)dVdvd^ is the number of neu-
trons in dV at whose speeds are in dv at v 
and whose directions of motion lie in the solid 
angle do) at cv at time t. The term k = v?, is 
the collision rate per neutron. If we assume that 
the cross section for velocity change -*v) 
depends only on the initial speed v\ the final 
speed v, and u>''o;, then 

1F. ADLER, in Reactor Handbook, (H. SOODAK, ed.), 
AECD-3645, Vol. I, p. 385. United States Atomic Energy 
Commission (1955); Reactor Handbook (H. SOODAK, ed.), 
Vol. Ill, P a r t A, p. 140. Interscience Publishers, New York 
(1962). 


