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where the integrations extend over the region in phase 
space defining the system. The kernels are given by 
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On the Derivation of a Variational Principle 
for Linear Systems 

A variational principle due to Roussopoulos (1) makes 
it possible to estimate the weighted average of an arbitrary 
linear functional of the solution to a given linear operator 
equation. It can be shown (2) that most of the familiar 
variational principles for linear equations (for example, 
those used by Marshak, Schwinger, Kourganoff, and 
Rayleigh) can be derived from Roussopoulos' principle as 
special cases. However, since it is still necessary to postulate 
arbitrarily the form of this functional, it is desirable to 
derive it from simpler or more intuitive considerations. 
The following is an attempt to do this. 

We consider a specified physical system (such as a 
reactor) whose state is described by a function<j>(x), where 
x denotes the relevant phase space coordinates of the 
system (that is, the independent variables such as position, 
energy, angle, and time). In general, there will be many 
ways of describing the given system, each with its corre-
sponding state function and associated linear or nonlinear 
equation which the state function satisfies. While the con-
ventional equations describing neutron diffusion are linear, 
it is possible to choose a nonlinear description, as in the 
invariant embedding method of Bellman. On the other 
hand, a problem such as the propagation of a one-dimen-
sional shock wave in compressible gas dynamics, which 
seems inherently nonlinear, can be linearized by interchang-
ing the independent and dependent variables as first shown 
by Riemann. In both cases, the alternative descriptions 
involve no approximations and are completely equivalent 
to the original ones; they are, however, more convenient 
for some purposes. 

We shall take the standpoint that our objective in choos-
ing an appropriate description of the system is not primarily 
to calculate the particular state f u n c t i o n i n all its detail; 
we are interested, instead, in determining a single numeri-
cal quantity depending on the state (for example, the 
absorption rate in a particular region of a reactor, or the 
multiplication constant). We shall denote this quantity 
by F{<}>] to indicate that it is a functional of the state de-
scription; that is, it depends on the state throughout the 
system phase space. As yet we have specified neither the 
state description nor the dependence on the state of the 
quantity we want to calculate. Regardless of the form of 
this dependence, however, the quantity can be expanded 
in a functional power series (3) 

An(xi • • • xn) — 
5nF[(f>] 

8<j>(xi) • • • d(j)(xn) 
(2) 

<t>=o 

and are the nth functional derivatives of F evaluated for 
<f> = 0. (This expansion can be obtained by considering that 
<j> is specified at a finite number of points, regarding F as an 
ordinary function of these variables, expanding it in a 
Taylor series, and letting the number of points at which 
tp is evaluated become infinite.) 

At this point, we shall impose two requirements on this 
formalism and determine what specializations in the 
theory they will lead to. 

(a) The first requirement is simplicity. We would like to 
choose a description of the system in such a way that the 
dependence on the state function, of the number we are 
primarily interested in, is as simple as possible. To this 
end, we shall assume that the higher terms in the functional 
power series are rapidly decreasing and that we can truncate 
the series after the quadratic term. 

(b) The second requirement is insensitivity. That is, 
we would like the value of F to depend only weakly on its 
argument so that it will be insensitive to errors made in an 
approximate calculation of the state function. More for-
mally, we shall require that if a small error is made in 
the state, the corresponding error 5F will vanish to first 
order. 

To determine the consequences of these two require-
ments, we have to calculate the variation in F from Eq. (1) 
and set it equal to zero. The result is 

8F = J dxS<j>(x) j^Ai(rr) + J dx'A2(x, = 0. (3) 

Now since this holds for arbitrary variations of <j> (provided 
they are sufficiently small), it follows that <j> must satisfy 
the following equation: 

/ Ai(x) + / dx'Ajx, x')<f>(x') = 0 (4) 

which is of the form of a general linear inhomogeneous 
integral equation, with a kernel which is symmetric (since 
the functional derivatives are symmetric in their argu-
ments) but which is otherwise arbitrary. Suppose now that 
we use Eq. (4) to simplify the calculation of the functional 
F by substituting it into the right side of Eq. (1) (the sum 
now goes only from zero to two). The result is 

F[<f>] = Ao -h^J dxAi(x)cf>(x), (5) 

w h e r e <j> i s n o w t h e p a r t i c u l a r f u n c t i o n w h i c h s a t i s f i e s 

Eq. (4). 
We thus have the following result: Imposing the require-

ments of simplicity and insensitivity implies that the 
theory which has been used to describe the system is equiva-
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lent to a linear integral equation with a symmetrical kernel, 
and the property of the system which is being evaluated is 
the average value of <f> weighted by the inhomogeneous term 
A\(x) in the integral equation. 

Imposing the two restrictions (a) and (b) has evidently 
limited us too greatly; while many physical systems admit 
of a description in terms of linear equations (which can 
always be written formally as an integral equation), they 
will generally involve unsymmetric kernels. Furthermore, 
while a weighted average of the state function is frequently 
of interest, one would like to be able to choose the weight 
function arbitrarily. 

To overcome this difficulty, let us consider the possible 
descriptions, which admit the superposition principle and 
hence satisfy linear equations, of a scattering and absorbing 
medium in which neutrons are diffusing. (These considera-
tions will also apply to more general physical systems.) 
One class of descriptions may be characterized as prob-
ability density distributions: the simplest example is the 
neutron density per unit phase space volume, but other 
possibilities are the flux, the absorption rate, and the 
collision rate. All of these descriptions are essentially 
equivalent since the calculation of any one from another is 
trivial. On the other hand, there is a second class of descrip-
tions which may be characterized as probability distribu-
tions that a neutron at a given point in phase space will 
eventually undergo a particular process: for example, the 
probability of being absorbed, of escaping from the system, 
or of producing a second generation by causing a fission. 
While the members of this class are again essentially equiva-
lent, it is usually not possible to obtain a description of 
one class from a description of the other class without solv-
ing again the equation defining the system. 

We suppose, therefore, that for the case of a general linear 
system, the functional we are trying to evaluate will depend 
on a member of the second class of probability distribu-
tions, which we will denote by <j>+, as well as on a probability 
density distribution <f>. As before, we can expand in a func-
tional power series in both arguments and again terminate 
the series after the first term that leads to a nontrivial 
result: 

F[<t>+, <j>] = A0 + J dxAi+(x)(f>(x) + J dxAi(x)<f>+(x) 
(6) 

Imposing the requirements of simplicity and insensitivity 
on the calculation of a functional which depends on the two 
classes of state descriptions (probabilities and probability 
densities) implies that the theory describing the system 
must be in the form of a linear functional equation with no 
restrictions on the kernel, and that the class of functionals 
which can be computed in such theories consists of linear 
averages of the state description with an arbitrary weight 
function. 

A restatement of this result is that the functional (6), 
regarded as dependent on two unknown functions <f> and 
is stationary in the neighborhood of the exact solutions and 
therefore constitutes a variational principle for Eqs. (7) 
and (8). It will provide an estimate of an arbitrary weighted 
average of the state function <£, provided that the weight 
function A{^(x) is chosen as the inhomogeneous term of 
Eq. (8), which is recognized as the adjoint to Eq. (7). This 
is, in fact, just the functional proposed by Roussopoulos 
from formal considerations; the preceding discussion con-
stitutes its derivation from the properties (a) and (b), which 
one can regard as plausible requirements to impose on a 
theory. 

It is also clear from the preceding derivation that the 
functional F can be regarded as a Lagrangian for the theory, 
since the statement that F is stationary with respect to 
arbitrary small variations of its arguments permits us to 
deduce Eqs. (7) and (8) from the functional. Consequently, 
the procedure outlined here enables one to take a given 
linear theory and immediately write down a Lagrangian 
whose stationary property is equivalent to the equations 
of the theory, and which, at the same time, constitutes a 
variational principle for the estimation of an arbitrary 
linear functional of the state of the system. 
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Applying, now, requirement (b) leads to the following 
equations for the two arguments: 

Ai(x) + J dx'A2{x, xr)4>(x') = 0 

Ai+(:r) + J dx'A^x', x)<t>+(x ') = o 

(7) 

(8) 

Using Eqs. (7) and (8) to simplify the expression for F 
results in 

F[<f>+, <£] = A0 + J dxAi+(x)<f>(x) (9) 

when the arguments satisfy the two preceding equations. 
In this case we have the following more general result: 

The Wigner-Seitz Cell; A Discussion and a 
Simple Calculational Method 

A frequent problem in reactor design is the calculation 
of the thermal flux distribution in a fuel element and its 
associated moderator, i.e., the cell problem. For the sake 
of simplicity, a common design practice is to use a mono-
energetic treatment, and the discussion in this letter is 
limited to this one-velocity approach. Because of the strong 
absorption in the fuel, P- l (diffusion) theory is inadequate 
and a common practice is to employ a P-3 calculation. If 
the fuel element is cylindrical, the associated moderator 
(whose outside perimeter is frequently square or hexagonal) 
is often transformed, for the purposes of calculation, into an 




