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Letters to the Editors 

On The Heat of Solution of Oxygen 
in Uranium Dioxide 

The heat and entropy of solution of oxygen in non-
stoichiometric uranium dioxide has been calculated from 
oxygen dissociation pressure curves by Blackburn (1) under 
the assumption that: (i) the partial molar heat of solution 
does not depend on the oxygen concentration, and (ii) the 
entropy of solution is a linear function of the oxygen con-
centration. The assumption may be easily proved or dis-
proved, on the grounds of the following considerations. 

x being the excess oxygen, as defined in the oxidized product 
formula U02+* . The above equation, which specifies that 
proposed by Blackburn, 

lnp02 = a{T) + b(T)x 

means that in the x versus 1/T plot the lines for In p = n (or 
Kn), with n consecutive integers, must be equispaced 
parallels. 

Using the results of Blackburn and those of Aronson and 
Belle (2), extrapolated by Belle and Lustman (3), the di-
agram of Fig. 1 has been drawn; the agreement with the 
forecasts looks at least reasonable. From a least squares fit 
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FIG. 1. Oxygen excess vs inverse of temperature at constant pressures 

The equilibrium constant for the reaction 

U02 + ix02 +± U02+x 

whence 

= Po2 

AFQ2 = — RT In p02 

for one mole of O2 . As a consequence, Blackburn's hypothe-
sis may be written 

In po2 = — 
A FQ2 

RT 
AHo2 - TASO2 A 

RT = - - B - C x 

of the above data, the partial molar heat of solution and 
entropy change per mole of 0 2 are found to be: 

AHO2 = 75,150 cal/mol AS0t = -3.50 + 182.89a; cal/mol °K 

The figure for the partial molar heat of solution is higher 
than that supplied by Blackburn (58,520 cal/mol), but, 
singularly enough, in excellent agreement with those given 
in the more accurate treatments of Aronson and Belle (2) 
and in the pictures of Miller, Merten, and Porter (4), who 
consider either the nonstoichiometric material as a solid 
solution of two oxides of different stoichiometrics, or ex-
plicitly the changes in the uranium oxidation states, which 
take place when the oxygen concentration is varied. In 
fact, they all yield figures between 75,810 and 75,980 cal/mol. 
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F[f] = E ^ 
» _ o n ! 

J dxi " ' J dxn A„(x i • • • x„)cl>(x i) • • • <p(x„) 
(1) 
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where the integrations extend over the region in phase 
space defining the system. The kernels are given by 
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On the Derivation of a Variational Principle 
for Linear Systems 

A variational principle due to Roussopoulos (1) makes 
it possible to estimate the weighted average of an arbitrary 
linear functional of the solution to a given linear operator 
equation. It can be shown (2) that most of the familiar 
variational principles for linear equations (for example, 
those used by Marshak, Schwinger, Kourganoff, and 
Rayleigh) can be derived from Roussopoulos' principle as 
special cases. However, since it is still necessary to postulate 
arbitrarily the form of this functional, it is desirable to 
derive it from simpler or more intuitive considerations. 
The following is an attempt to do this. 

We consider a specified physical system (such as a 
reactor) whose state is described by a function<j>(x), where 
x denotes the relevant phase space coordinates of the 
system (that is, the independent variables such as position, 
energy, angle, and time). In general, there will be many 
ways of describing the given system, each with its corre-
sponding state function and associated linear or nonlinear 
equation which the state function satisfies. While the con-
ventional equations describing neutron diffusion are linear, 
it is possible to choose a nonlinear description, as in the 
invariant embedding method of Bellman. On the other 
hand, a problem such as the propagation of a one-dimen-
sional shock wave in compressible gas dynamics, which 
seems inherently nonlinear, can be linearized by interchang-
ing the independent and dependent variables as first shown 
by Riemann. In both cases, the alternative descriptions 
involve no approximations and are completely equivalent 
to the original ones; they are, however, more convenient 
for some purposes. 

We shall take the standpoint that our objective in choos-
ing an appropriate description of the system is not primarily 
to calculate the particular state f u n c t i o n i n all its detail; 
we are interested, instead, in determining a single numeri-
cal quantity depending on the state (for example, the 
absorption rate in a particular region of a reactor, or the 
multiplication constant). We shall denote this quantity 
by F{<}>] to indicate that it is a functional of the state de-
scription; that is, it depends on the state throughout the 
system phase space. As yet we have specified neither the 
state description nor the dependence on the state of the 
quantity we want to calculate. Regardless of the form of 
this dependence, however, the quantity can be expanded 
in a functional power series (3) 

An(xi • • • xn) — 
5nF[(f>] 

8<j>(xi) • • • d(j)(xn) 
(2) 

<t>=o 

and are the nth functional derivatives of F evaluated for 
<f> = 0. (This expansion can be obtained by considering that 
<j> is specified at a finite number of points, regarding F as an 
ordinary function of these variables, expanding it in a 
Taylor series, and letting the number of points at which 
tp is evaluated become infinite.) 

At this point, we shall impose two requirements on this 
formalism and determine what specializations in the 
theory they will lead to. 

(a) The first requirement is simplicity. We would like to 
choose a description of the system in such a way that the 
dependence on the state function, of the number we are 
primarily interested in, is as simple as possible. To this 
end, we shall assume that the higher terms in the functional 
power series are rapidly decreasing and that we can truncate 
the series after the quadratic term. 

(b) The second requirement is insensitivity. That is, 
we would like the value of F to depend only weakly on its 
argument so that it will be insensitive to errors made in an 
approximate calculation of the state function. More for-
mally, we shall require that if a small error is made in 
the state, the corresponding error 5F will vanish to first 
order. 

To determine the consequences of these two require-
ments, we have to calculate the variation in F from Eq. (1) 
and set it equal to zero. The result is 

8F = J dxS<j>(x) j^Ai(rr) + J dx'A2(x, = 0. (3) 

Now since this holds for arbitrary variations of <j> (provided 
they are sufficiently small), it follows that <j> must satisfy 
the following equation: 

/ Ai(x) + / dx'Ajx, x')<f>(x') = 0 (4) 

which is of the form of a general linear inhomogeneous 
integral equation, with a kernel which is symmetric (since 
the functional derivatives are symmetric in their argu-
ments) but which is otherwise arbitrary. Suppose now that 
we use Eq. (4) to simplify the calculation of the functional 
F by substituting it into the right side of Eq. (1) (the sum 
now goes only from zero to two). The result is 

F[<f>] = Ao -h^J dxAi(x)cf>(x), (5) 

w h e r e <j> i s n o w t h e p a r t i c u l a r f u n c t i o n w h i c h s a t i s f i e s 

Eq. (4). 
We thus have the following result: Imposing the require-

ments of simplicity and insensitivity implies that the 
theory which has been used to describe the system is equiva-




