letters to the Editor

Comments on "Spectrum of Delayed Neutrons from the Thermal-Neutron Fission of Uranium-235"

As a result of a misunderstanding, it was assumed in Ref. 1 that in the experiments reported by Fieg² a lead shield 8.9 cm thick was used around the proton recoil counters. In reality the lead shield was 0.3 cm thick in the energy range above 200 keV and 1.5 cm thick for 80 keV \lt energy range above 200 keV and 1.5 cm thick for 80 keV $\leq E \leq 250$ keV (the two-parameter gamma-ray neutron *E* < 250 keY (the two-parameter gamma-ray neutron discrimination method of Bennett³ was used).
In the past a number of experimenters have used rela-

tively thick shields in their measurements of delayed neutron spectra, and the question of possible lead-shield spectrum shielding needs to be resolved. Fieg and Lalovic have performed both measurements and calculations for the case of a Pu-Li source, which has a neutron spectrum similar to that of delayed fission neutrons and a cylindrical proton recoil counter that has been surrounded with lead proton recoil counter that has been burrounded with lead of varying differencess. The experimental results are
shown in Fig. 1 shown in Fig. 1.
To confirm these results, a Monte Carlo calculation⁴

has been done for the 5.0-cm-thick lead shield with the same geometry as in the experiment. The source spectrum has the form $\phi(E) = \exp(-3E) \sinh \sqrt{E}$ with the mean energy at ~500 keV. The difference between the source spectrum and the spectrum in the counter area (integrated over the effective counter volume) is given in Fig. 2. As over the effective counter volume) is given in Fig. 2. As in the experiments, there is no substantial modification

of the spectrum.
Similar measurements have been performed at the University of Washington using an Am-Li source, which also has a spectrum closely approximating that of delayed neutrons. These results are in basic agreement with those described above. Monte Carlo calculations performed⁵ at the Los Alamos Scientific Laboratory (LASL) are also consistent with these measurements and provide an explanation for the incorrect assumption of the lead shield correction suggested in Ref. 1. The LASL results show that if the source neutrons are followed through only two collisions in the shield as in Ref. 1, then the correction is large and consistent with the result reported there. If the neutrons are tracked through a total energy loss of 10% , neutrons are tracked through a total energy loss of 10%,
however, the average number of collisions in the shield however, the average number of collisions in the shield

- ²G. FIEG, J. Nucl. Energy, **26**, 585 (1972).
- ³E. F. BENNETT, *Nucl. Sci. Eng.*, 27, 16 (1967).
- ⁴G. ARNECKE, H. BORGWALDT, V. BRANDL, and M. LALO- $\frac{1}{2}$. $\frac{1}{4}$ $\frac{1}{2}$ and \frac VIC, THE KARLSTURE MONTE CARLO CODE KARLS CO, THEN 1270/ 4.

Neutron Energy (MeV)

Fig. 1. Experimental neutron spectra with different lead shields. The curve drawn represents the spectrum when the shield showed the curve drawn represents the spectrum when the shield was 5.0 cm thick utilizing the correction fectors in Ref. 1. was 5.0 cm thick, which ing the correction factors in Ref. 1.

 $F = \frac{F}{\pi}$ and g_{r} as for Fig. 1 with a 5.0-cm-thick lead shield.

¹W. ROBERT SLOAN and GENE L. WOODRUFF, *Nucl. Sci. Eng.*, **55**, 28 (1974).

 5_A E EVANS and D B SMITH Person (50.5×10^{-14}) . The communication (Oct.) 1974).

for neutrons reaching the detector turns out to be ~ 6.5 . The additional scattering events have the effect of compensating for the variation in the lead cross section.

In summary, the effect of lead shields up to 5 cm thick has been shown to be small in typical neutron spectrum measurements performed with proton recoil proportional counters. Note that the possible bias of thicker shields, such as the B.g-cm-thick shield used by Batchelor and Hyder, 6 remains to be determined and that there are possible geometric effects yet to be resolved. It should also be kept in mind that an elastic scattering event in lead degrades the neutron energy by $\sim 1\%$. A hardening correction, i.e., a shift in the energy axis, is therefore necessary even for relatively thin shields. This correction mayor may not be significant depending on the nature of the experiment.

Karlsruhe Nuclear Research Center M. *Lalovic*

Institute for Neutron PhYSics and Reactor Technology Karlsruhe, West Germany

G. *Woodruff*

G. *Fieg*

University of Washington Department of Nuclear Engineering Seattle, Washington 98195

May 5,1975

GR. BATCHELOR and H. R. McK. HYDER, *J. Nucl. Energy, 3,* 7 (1956).

Comment on "Influence of Deep Minima on Multigroup Cross·Section Generation"

Although the author of a recent technical note¹ addressed the problem of defining a weighting spectrum for the cross section and successfully demonstrated the sensitivity of the results to the buckling (B^2) used, he did not address the basic problem that the actual group-averaged cross section is a spatially dependent quantity.

The spatial variation in group-averaged cross sections has been experimentally shown to be significant.^{2,3} It has been demonstrated that the cross-section probability-table method can be used to calculationally reproduce the experimentally observed spatial variations.⁴ It was further demonstrated⁵ that the cross-section probability-table method can be used in conjunction with $Case's$ method⁶ to define an asymptotic spectrum that is identical to that obtained by Becker:

$$
N_0(E) = \frac{V}{2} \ln \left(\frac{V\Sigma_T + 1}{V\Sigma_T - 1} \right) = \frac{1}{2iB} \ln \left(\frac{\Sigma_T + iB}{\Sigma_T - iB} \right); \quad V = \frac{1}{iB}.
$$

²J. B. CZIRR and R. L. BRAMBLETT, *Nucl. Sci. Eng.*, **28**, 62 (1967).

More important, it has been demonstrated⁷ that the probability-table method reproduces not only the asymptotic spectrum for deep penetration but also the transient spectrum for shallow penetration. The combination of asymptotic and transient spectra leads to spatially dependent cross sections that can result in large differences in reaction rate or flux⁸ when compared to the normal multigroup calculations.

In terms of neutron transport, the above spectrum can be considered a generalization of Bondarenko⁹ selfshielding, while in terms of photon transport it is equally applicable as a generalization of the method normally used to define the Rosseland¹⁰ mean.

Dermott E. Cullen

Lawrence Livermore Laboratory University of California P. O. Box 808 Livermore, California 94550

June 9, 1975

7D. E. CULLEN, *Nucl. Sci. Eng.,* 55, 387 (1974).

sD. E. CULLEN, "A Method for Multi-Group Neutron Calculations in the Unresolved Resonance Region," UCRL-75164, Lawrence Livermore Laboratory (1973).

⁹I. I. BONDARENKO, "Group Constants for Nuclear Reactor Calculations," Consultants Bureau, New York (1964).

¹⁰G. C. POMRANING, The Equations of Radiation Hydrody*namics,* Pergamon Press, New York (1973).

Response to "Comment on 'Influence of Deep Minima on Multigroup Cross·Section Generation' "

 $Cullen¹$ has commented that in discussing the influence of deep minima on multigroup cross sections,² we did not address the basic problem that the group-averaged cross section is a spatially dependent quantity. He also suggested that a recently published method³ could be utilized to treat the spatial variations.

It is, of course, true that group-averaged cross sections are space dependent in principle. However, an underlying assumption behind use of multigroup methods is that at some level of detail, this space dependence can be neglected. In our own work, we have tried to assess what this level is through use of approximate space-dependent calculations. ⁴

Our purpose in Ref. 2 was to demonstrate the kind of difficulty that could arise in using standard weighting procedures with data files of high resolution. Whether spatial dependence also is a potential difficulty is likely to depend on the nature of the problem. For example, if one is dealing with a slowing-down problem (i.e., one where scattering is predominant and where the sources at energies of interest are determined by inscattering) and one encounters a narrow deep minimum, it may be reasonable to assume that the spatial shape (buckling) characterizing energies above the minimum would govern. Under such circumstances, the weighting function is likely to be the principal concern and the spatial dependence is likely to be

¹M. BECKER, *Nucl. Sci. Eng.,* 57, 75 (1975).

³R. L. BRAMBLETT and J. B. CZIRR, *Nucl. Sci. Eng.,* 35, 350

⁴D. E. CULLEN, and E. F. PLECHATY, *Trans. Am. Nucl. Soc.*, *17, t90 (1973).* D. E. CULLEN and C. R. WEISBIN, *Trans. Am. Nucl. Soc., 17,*

^{488 (1973).}

GE. M. CASE, *Linear Transport Theory,* Addison-Wesley Publishing Company, Reading, Massachusetts (1967).

¹D. E. CULLEN, *Nucl. Sci. Eng.,* 58, 261 (1975).

²M. BECKER, *Nucl. Sci. Eng.,* 57, 75 (1975).

³D. E. CULLEN, *Nucl. Sci. Eng.,* 55, 387 (1974).

⁴E. T. BURNS, PhD Thesis, Rensselaer Polytechnic Institute (1971).