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On the Asymptotically Correct Approximation 
to the Transport Equation 

A new truncation scheme for the spherical harmonics 
expansion has been proposed by Pomraning1. It yields the 
exact transport-theory asymptotic behavior in any homog-
eneous region. Pomraning treated the isotropic scattering 
case extensively and showed the extension to linearly ani-
sotropic scattering. Comparison of his truncation scheme 
with the recent developments of the Case method for an 
arbitrary scattering law2 brings out interesting similarities 
between exact and approximate methods in the general 
case. In this note the explicit expression for the ratio of 
the N + l 'st to the N - l 'st angular moment is given and the 
missing part of Pomraning's arguments is completed. 
Namely, it will be shown that the attenuation distances of 
the remaining solutions in the finite-order approximations 
are all shorter than the diffusion length as given by the 
asymptotic eigenvalue. 

To avoid the ambiguities, a brief review of the regular 
solutions of the transport equation in one dimension is 
given first. The same notation as is standard in the Case 
method is used here. It is sufficient to demonstrate the 
relations in one dimension because the general solution in 
three dimensions, at least in principle, can be obtained by 
the superposition of elementary solutions along all possible 
directions. The transport equation is 

[ii(d/dx) + z](l>(x9ii) = zf1 dn'f(n-+nt)<MfifH') , (i) 

where the scattering kernel is given by a finite series of 
Legendre polynomials 

/Oio) = i h (2m+l)fmPM; 0 < / o < l ; m =0 

l / J ^ / o ; (2) 

thus, we assume no multiplication. The analysis of the 
multiplying case follows the same pattern and is not 
included here. In a homogeneous medium we are looking 
for solutions in the form 

= exp(- Tjx/v) </>v(M) (3) 

with The regular eigensolution is 

^ g(w) , (4) 

where 
M 

g(v,V)= Tj (2rn+l)fmgm{v)Pm(^) • (5) m — o 

The functions gm(v) are defined by the recursion formula 

(n +1 )gn +i(v)+ngni-i (v) - (2n +1)(1 -/„) vgn(v) = 0; 

n ^ M ; 

go= 1 . (6) 

We note that all angular moments of the regular eigensolu-
tion for n s* Mare proportional to g(v,v) as it is deduced 
from Eqs. (4) and (5), namely3, 
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gn{v) = v2_n{v)g(v,v) ) fl^M , (7) 

where JLn(v) are Legendre's functions of the second kind 
defined on the complex plane with the cut (-1,1). 

The asymptotic (i.e., the discrete) eigenvalue ±v0 is 
determined as the zero of the dispersion function A(2) 

A ( z ) = (M +1) 

as derived from Eq. (7) for n = M and n = M+ 1. The more 
familiar form of the dispersion function is obtained from 
Eq. (8) using recursion formulae for and g„(z) 

M 
A(2) = 1-z S (2m + l)fmgm(z)Zm(z) • (9) 

m = 0 

Turning now to the spherical-harmonics expansion meth-
od and the new truncations scheme of Pomraning's in 
particular, we observe, first, that N, the order of the finite 
approximation, must be larger than or equal to M to be 
physically and computationally consistent. Second, the 
angular moments of the spherical-harmonics expansion up 
to n = M obey the same recursion formula, Eq. (6), as func-
tions gn and for n >M obey a simplified recursion formula, 
obtained from Eq. (6) by setting/„ equal to zero. To obtain 
the asymptotically correct approximation, it is only neces-
sary to require that the angular moments do not violate 
Eq. (7) for n > M. This has been done by Pomraning by 
expressing the N+ l 'st angular moment by the N- l 'st in 
the closing equation for n = N. From Eq. (7) one derives 
the general expression for his ratio aN, which is 

aN = JLn+ 1 (vo)/ZN- 1 W (10) 

where we write now v0 for the exact value of the asymptotic 
eigenvalue to distinguish it from other eigenvalues, ob-
tained in the finite-order approximations. Using the recur-
sion formula for JLn(v0), the closing equation of the finite 
set of angular moments becomes for any N > M 

VO£N(vo)^N- 1 (v)- VZN- 1 (VQ)^N(V) = 0 . (11) 

Equation (11) is fully equivalent to the requirement that the 
determinant of the system of linear equations for the 
angular moments is equal to zero. For v = v0 one can 
reduce Eq. (11), using recursion formulae, to the statement 
A (1̂ 0) = 0 in the same way as Eq. (9) has been derived from 
Eq. (8). This proves that, choosing aN according to Eq. (10), 
one of the approximate solutions will decay with the 
distance away from the source in the same way as the 
exact asymptotic solution. 

It remains to prove that v0 is the largest positive zero 
of Eq. (11), and, furthermore, that besides v0 there are 
exactly j>{N - 1) pairs of zeros between -^0and i>0 for odd 
N. It would be desirable to prove that the additional zeros 
are all confined to the interval (-1,1), yet this part of the 
general proof is still missing. 

Following Davison4, we introduce a new variable 

y = Vv (12) 

and the functions 

= • (13) 
In terms of functions Rn, the recursion formula, Eq. (6), 
becomes 

Rn Cv) = (2n +1)(1 -fn) - ny/Rn . 1 (y) ; 
fn = 0 for n> M . (14) 

4B. DAVISON Neutron Transport Theory, Oxford University 
Press, Inc., New York (1957). 
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For the odd PN approximation we obtain exactly i (N + 1) 
zeros yfitfa by setting RN equal to zero, as has been proved 
by Davison for the isotropic scattering. With our restric-
tions imposed upon the scattering law, Eq. (2), the proof 
remains unchanged in the case of anisotropic scattering. 
Thus, due to the ordering of the zeros for different orders 
of approximations, 

3^o< . . .< y*N+1,0< yu,o< 3>N-1,0< . . . . (15) 

and the properties of R„(y) functions 

Rn(0)> 0 and ~ Rn(y)< 0 , (16) 

we conclude that the finite approximation dispersion func-
tion, Eq. (11), expressed in terms of Rn- I function 

Rn-1 (y) =yT(v0) (17) 

has no zeros between 0 and yo - 1 / b e c a u s e the value of 
T(v0) given by 

T(p0) = Nv01n(vo)/JLn-i (vo) (18) 

is positive, since it is an even function of vo. Thus, y0 is 
the smallest zero of Eq. (17) and the first part is proved. 

Observing that even-order functions R2n have positive 
finite limits as y goes toward infinity, that they have 
negative derivatives, and that they have poles at zeros of 
the corresponding R2n -1 functions, we conclude, by re-
peating the arguments of Davison, that Eq. (17) has exactly 

Fig. 1. Relative positions of zeros in Pc and A5 approximations 
for the scattering law with f0 = 0.75; fx = 0.25; /2 = 0.10; /3 = 0.05; 
and /4 = 0.01. If the interval around y = 0.445 is expanded, one 
obtains the picture of the first zeros that looks very similar to 
the situation around y = 1.5. where the second zeros are situated. 

i(N + 1) distinct zeros for N odd, including yo. This 
concludes the proof. As an example, Fig. 1 illustrates the 
relationship among zeros for P5 and A5 approximations. 
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Comments on an Article by J. Nilsson and R. Sandlin 

In a recent paper, Nilsson and Sandlin1 have discussed 
use of a source separation technique for investigating the 
attenuation of neutrons in annular ducts. In methods of this 
type, one attempts to separate the neutron flux into its 
several components by use of thin cadmium sheets. Of 
course, it is only thermal (subcadmium) neutrons that can 
be successfully separated in this manner. However, such 
techniques are potentially extremely valuable for obtaining 
a better understanding of the behavior of radiation in 
shields containing ducts. It is unfortunate that the work 
reported by Nilsson and Sandlin does not take full advan-
tage of the information available in a source separation 
experiment. 

The first problem encountered in this paper is con-
cerned with the experimental techniques used. The authors 
have claimed that the measurements i'account only roughly 
for the components as defined. . . However, the quanti-
ties which were measured do not even "roughly" corre-
spond to the definitions of the various flux components. 
For instance, the streaming component (S) is supposed to 
include only those neutrons which enter the duct mouth in 
the thermal energy range and travel to the detector without 
striking the duct walls. However, the quantity that was 
measured includes all neutrons which enter the duct mouth 
in the thermal energy range. The true streaming compon-
ent could have been measured by lining both walls of the 
annular duct with cadmium. 

In addition, the albedo component (A) is supposed to 
include neutrons of all energies which enter the duct mouth 
and strike the walls before returning to the duct as thermal 
neutrons. The experimental arrangements used in the 
measurement of the albedo component contained cadmium 
covers at the duct mouth. Therefore, thermal neutrons 
were prevented from entering the duct mouth during this 
part of the experiment. 

The second major difficulty encountered is the large 
uncertainty associated with some of the data. Use of data 
not known to better than a factor of 10 makes meaningful 
comparison with theory nearly impossible. For the source 
separation technique to be of maximum value, it is neces-
sary to measure each flux component with reasonable 
accuracy. This can be accomplished by maintaining suffi-
ciently high count rates during the measurement of basic 
quantities so that even the derived flux components have a 
small associated standard deviation. 

The third problem encountered in this paper is the 
multiplying constants which appear with the theoretical 
expressions for each flux component. The constants that 
were found to give best agreement can be expected to apply 

'J. NILSSON and R. SANDLIN, "Measured and Predicted Thermal-
and Fast-Neutron Fluxes in Air -F i l led Annular Ducts," Nucl. Sci. 
Eng., 23, 3, 224 (1965). 


