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The Transfer Cross Section Between 
Overlapping Thermal Groups 

A neutron thermalization problem which has received 
some attention in the literature (1, 2) is that of finding the 
variation in space of the thermal neutron spectrum in two 
adjoining regions of scattering material at different tem-
peratures T and T̂o . The overlapping thermal group theory 
(2) approaches this problem by assuming that the neutron 
flux spectrum has the form 

v) = 4>(X)M(V) + <t>0(x)M0(v) (1) 

where v is the velocity, x is the space coordinate, and M and 
Mo are maxwellian distributions at the bulk temperatures 
T and T0 of the two media. Then the thermalization problem 
becomes one of solving two diffusion equations in the neu-
tron groups 4>(x) and </> 0(x) which are considered 
monoenergetic for the purposes of diffusion. These equations 
have been given by Selengut (2) and are discussed at the end 
of the letter. In this model neutron thermalization is re-
placed by a transfer process which takes the neutrons from 
one group to the other. Selengut (2) has given a "transfer 
cross section" 
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FIG. 4. Period of xenon oscillation as a function of the 
threshold value of the neutron flux. 

tion of the radius that is flattened, for the case of a zero 
power coefficient. For comparison the corresponding curves 
for axial oscillations (1) are included in Figs. 2 and 3 as 
dashed lines, where, for a cylindrical reactor with a core 
diameter equal to the core height, the corresponding value 
of H2/M2 is four times that of R2/MK We see that, for such 
a reactor, more buckling must be added to excite the first 
radial harmonic than to excite the first axial harmonic, so 
that the threshold flux for radial oscillation lies above that 
for an axial oscillation. 

Figure 4 shows the oscillation period at the threshold as 
a function of the threshold flux level. As shown in Eq. (11) 
of ref. 1, this period is a function of the threshold flux only 
and not directly a function of the pile size, flatness, or 
oscillation mode. Thus the curve of Fig. 4 is good for any 
degree of flatness and for both axial and " t i l t " oscillations. 
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<TT = ~ <7FA A (2) 

for a heavy gas of mass A and free atom cross section a fa. 
This letter considers a free gas of any mass A, and derives 
an expression for <tt , which is valid once assumption (1) 
has been made. For the part of the spectrum at temperature 
To in the medium at temperature T it is 

(AT T\ 2 V l + T/(ATQ) 
(3) 

In the medium at temperature T, the first part of the 
spectrum in Eq. (1) does not exchange energy with the 
medium since it is also at temperature T. However the 
second part of the spectrum in Eq. (1) does exchange energy 
because it is at the different temperature T0 . In the over-
lapping group theory the second group is transferred to the 
first group in such a way that the rate of change of energy 
is made equal to that calculated in free gas theory. In a 
free gas at temperature T which has a scattering cross sec-
tion <rs , the rate of change of average energy per neutron 
of a neutron spectrum which is a maxwellian at tempera-
ture To is 

^ = - n J as(Eo)(Eo - E)a VgMQ dvo (4) 

where n is the number of atoms per cubic centimeter, 
(Eo — E) is the average energy change undergone by a 
neutron of energy E0 in a collision in a free gas at tempera-
ture T, and 

4 (2kT0\-*» 2 f-mv o2\ 
(5) 

is the fraction of neutrons per unit velocity interval, 
von Dardel (5) has evaluated first the quantity (E0 — E)ax 

and then the integral (4) explicitly in the course of his work 
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on neutron cooling, obtaining the criterion 

dEo 
dt 

_ 8 (2kT\ 
V/TT \ m ) 

^ k(T0 - T) 
no-fa • 

A( 1 + \/A)m 

1 + 
TP — T > 

T(1 + L/A)\ 

dEo 
dt 

= — {EQ — E)^^ I Vo Mo dv o (7) 

V T W A . T W T ) 

(6) 

where m is the neutron mass. 
We now require that dE0/dt from the gas model be equal 

to the average rate of energy change of the 0o group in the 
overlapping model, which is the product of the transfer rate 
from 0o to 0, narfvoModvo , and the change of energy per 
neutron transferred, E — E0. 

The factors \/T/A and \/To are simply proportional to the 
fluxes of gas atoms and of neutrons respectively. Criterion 3 
can be seen to be satisfied by substituting Eq. (3) for <TT . 

The expression (2) for <TT from heavy gas theory does not 
satisfy the three criteria above, but this is because all three 
criteria consider low mass particles (criterion 3 does so in at 
least one side of the symmetry equation), and the assump-
tions of heavy gas theory are not expected to hold. However, 
Eq. (2) does agree with the limit of Eq. (3) for high mass. 

Leslie ( 4 ) has recently suggested a similar expression 

a (i + i/Ay Xi (8) 

This procedure defines <TT , but first EQ — E must be chosen. 
In the steady state diffusion of the T0 group in the medium 
at temperature T, the transfer to the group T is the sink 
term (in the case of no absorption) and the net inward 
diffusion of T0 neutrons is the source term. Since the average 
energy per neutron diffusing into an elementary volume is 
2kT0 , the energy per neutron transferred must be 2kT 0 . 
Thus Wo - E = 2k (To - T). This is the expression used by 
Selengut (2) and is consistent with the assumption (1) 
that the shape M0 is retained throughout the transfer 
process. 

Then from Eqs. (6) and (7) and putting fvoM0dv0 =v0 = 
(2/\/ir)\/2kTo/m, we get the final expression for or given 
in Eq. (3). 

The expression (3) for <TT (A, T0 —• T) satisfies three cri-
teria which are expected to hold on physical grounds: 

1. LIRN^O <TT(A) = 0 i.e., there should be vanishing energy 
transfer for a hypothetical free gas much lighter than the 
neutron. 

2. O"Y should have a maximum value in the neighbourhood 
of A = 1 since equal mass particles give optimum energy 
transfer. For a theory in which the scattering cross section 
is not a function of energy, this maximum should occur 
exactly at A = 1. However it is well known at low energy 
in a free gas that <rs increases with decreasing A because 
of increasing encounters due to thermal motion of the gas. 
Thus the maximum in <TT should actually occur below 4̂ = 1. 
The maximum in <TT(A, T0 —> T) in Eq. (3) in the case 
!To~ T occurs at A = 1/2. 

3. In a practical problem, the heating of the gas atoms is 
always insignificant, but from a formal point of view the 
overlapping group result should be applicable not only to 
the heating of the neutrons by the gas, but also to the heat-
ing of the gas by the neutrons, and this leads to a certain 
symmetry in <rr . Assume that the gas spectrum is also the 
sum of two overlapping groups, and consider a case where 
all the neutrons are initially at temperature T0 while all 
the gas is at temperature T. The rate of heat loss by the 
neutrons must equal the rate of heat gain by the gas atoms. 
But for both neutrons and gas atoms, the energy difference 
between groups is 2kT — 2kT0 per particle transferred. 
Thus, the transfer rate of atoms between groups must equal 
the transfer rate of neutrons between groups. Equating 
these two transfer rates and cancelling the products of the 
gas density and atom density which occur in both, we obtain 

where Xi is the first eigenvalue of the free gas scattering 
operator, and is smaller than the corresponding factor 
Vl + T/(AT0) in Eq. (3) by 12% in the case of A = 1. The 
form (8) satisfies criteria 1 and 2 but not criterion 3. 

The solution of the diffusion equations for the two over-
lapping thermal groups in two adjoining half-spaces at tem-
peratures T and T0 has been given by Selengut (2) for the 
case of constant aT . It is repeated here because <TT assumes 
different values in the two half-spaces. In Eq. (1) Mo(v) is 
the number of neutrons per unit velocity interval in the 
group at temperature To normalized to unity (Eq. (5)), and 
the flux(x) of the group is a function only of space. In the 
absence of absorption the diffusion equation for0o(:r) in the 
medium at T is 

where 
V20o - <f>o/Lo2 = 0 

1/Lo2 = n<rT(770-> T)/D (9) 

where D is the diffusion constant. In the medium at TO there 
is a source term from the other group 

V20 o + <f>/L2 = 0 (10) 

where 1/L2 = TI<TT(T —• T0)/D, assuming the same diffusion 
constant. (In the medium at T0 , there is of course no net 
transfer of the flux at T0 to itself. To be consistent with the 
fact lim-r^To <rr ^ 0, Eq. (10) can be thought of as having 
equal and opposite source and loss terms which are not 
shown.) 

There are two similar equations in the other group0. The 
solutions to these four equations, assuming continuity of 
flux and current at x = 0, are 

00 = L0 

L + L0 
-xlL o 

0 = 1 -

0 = 

L + U 

L + L0 

region T, x> 0 

• region T0, x <0 

0o = 1 -
L + Lo 

An extension can be made to the case of different masses 
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in the two media. Although the expression (3) for <TT is exact 
for a free gas, this is not to say that the representation of the 
flux by two overlapping groups is satisfactory. 
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A Comment on the Treatment of Asymmetric 
Thin Regions* 

Thin region theory (1) has been used extensively in 
reactor calculations for the treatment of geometrically 
thin, but often optically thick, regions. A typical assump-
tion is that the transmitted, reflected, and incident neutron 
currents near a thin region of thickness 21, illustrated in 
Fig. 1, are approximately isotropic, and that the probabili-
ties of transmission, T, and reflection, R, of neutrons 
incident on the region are independent of the direction 
(i.e., right or left) of incidence. The net currents on the 
left and right faces of the slab are then given by Eq. (7) 
of ref. 1 as1 

1 1 + T 2 - R2 

= ~ 7 T T - ^ ™ -2(1 + R)2- T2 

JN = 

(1 + R)2 - T2 

1 1 + T2 - R2 

<P R 

(1) 

(1 + R)2 - T2<PL 2 (1 + R)2 - T2<PR 

where <PL and <PR are the fluxes at the left and right faces. 
While Eqs. (1) may be used directly as boundary conditions, 
a more frequently used form of the theory is based on the 
fact that the solution of the difference equations form of the 
diffusion equations for a region without interior mesh points 
yields expressions for the currents which are of the same 
form as Eq. (1); viz. (see Eq. (10) of ref. I ) 1 

(2) 

By equating coefficients of (1) and (2), a fictitious diffusion 
coefficient D and a fictitious absorption cross section 2a are 
obtained which allow the formal use of diffusion theory 
within the region, but which in fact preserve the transport 
theory relations (1) at the surfaces. Modifications of the 
procedure for the case in which interior mesh points are 
introduced in the region have also been developed (2,3). 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 It is assumed here that the thin region is source free. 

Thin region—̂ J 

R . M . PEARCE 
J l = TJR + Rjf 

- 2 t -

FIG. 1. Surface current relations for a symmetric thin 
region. 

Thin regions, however, are often introduced into in-
herently asymmetric configurations. A thin absorbing 
plate might, for example, be placed between a core and a 
reflector region in order to suppress a power peak. Then, 
because of the different spectral indices (4) of the materials 
to the left and right of the thin region, the energy averaged 
transmission and reflection probabilities for left incidence, 
TL and RL , might be different than the corresponding 
probabilities, TR and RR , for right incidence.2 In such a 
case, it is easily shown that Eq. (1) should be replaced by 

R 1 TR + (1 - RL)( 1 + RR) 
JL = ~ ~ ,—^ W-1—;—— M M 2 (1 + #L)(1 + flit) - TL TR 

TR 

(1 + RL)( 1 + RR) - TR 
<P R 

JR = 

(3) 

(1+/2L)(1 + « R ) - TL T V 

_ 1 TR + (1 + RL)( 1 - RR) 

2 (1 + RL)(1 + RR) - Tl TR 
<PR 

equations which contain four distinct coefficients, instead 
of the two which appear in (1). 

It is tempting in this case to divide the slab into two 
regions with fictitious absorption and diffusion constants 
(Fig. 2), in the expectation that by comparing coefficients 
of the resulting integrated difference-diffusion equations 
with (3), the fictitious constants may be determined. How-
ever, the relations obtained by this strategem3 are 

• ' - ( t + T - T T ) <p L • 
2Dl D2/t 
"J"~V 

2A Dt/t 
JR = ~ <PL 

(D2 Z21 2D22/t\ (4) 

E = 2(A + D2) + (Zi + S2)*2 

which contain, not the necessary four, but only three dis-

2 If the partial current spectra on each side of the slab 
were the same, then the left and right transmissions would 
be the same. There is at present, however, no reason to 
believe the partial current spectra are not different . 

3 Equations (4) are obtained by integrating the differ-
ence-diffusion equation in the slab from the left face to 




