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FIG. 2. Graphs of dimensionless minimum profile area 

a = WJcToKAp/qo3, and dimensionless fin height /z = whl\/qQ 

for (i) optimum fin, (ii) optimum fin with constant tempera-
ture gradient, and (iii) optimum triangular fin. 

and consequently we find that the function T defined in (6) 
will satisfy the boundary conditions (5) if and only if C — 0, 

B h i X ) = (X/4/x) - ( V A / X 3 ) , 

16m3A[2A/0(A) - (X2 + 4 ) / i ( X ) ] + 4/zX4/i(X) = X 5 / 0 ( X ) . ( 7 ) 

Thus, the minimizing problem has been reduced to find-
ing, for given A, a pair of values X and /z satisfying (7) for 
which 

a = 4 M 3 / X 2 ( 8 ) 

is a minimum. It follows from (8) and da/d\ = 0 that 
dn/d\ = 2ju/3X. If this value is substituted into the equation 
obtained by differentiating (7) with respect to X, the result 
can be manipulated to read as follows: 

16 M 3 A[(2X - X 3 ) / o ( X ) - (X2 + 4 ) 7 ! ( X ) ] 
( 9 ) 

+ ( 4 M X V 3 ) [ 1 1 / 1 ( X ) + 3 / 0 ( X ) ] = X 5 [5 /o (X) + X / ^ X ) ] . 

Equations (7) and (9) are a pair of simultaneous linear 
equations in the variables ^ and ju3A and their solution is 

= 3X[(4X + X3) / 1
2 ( \ ) + 2 ( 8 + A2)/q(X)/I(X) - (8X + X3)/0

2(X)] 

M " 8 [ 4 ( 4 + X2)/,2(X) - 2X/o(X)/i(X) - 3X2/02(X)] 

(10) 

= X5[3X/I2(X) + 47Q(X)/I(X) - 3X/O2(X)] 

A 32 m 3 [4 (4 + X2)/i2(X) - 2X/c(X)/i(X) - 3X2/02(X)] ' ( 

Equations (8), (10), and (11) can now be used to calculate 
the values of a and n plotted versus A on Fig. 2 for the tri-
angular case. The maximum possible value of A is 0 . 6 6 4 0 , 

attained when X = 4.975 and in this extreme case the dimen-
sionless profile area a is 1.4746. It is seen that for small and 
moderate values of A the triangular fin is slightly inferior to 
the optimum fin, as well as to the optimum fin with constant 
temperature gradient, the inferiority decreasing with in-
creasing A. For larger values of A the optimum triangular 
fin becomes superior to the optimum fin with constant 
temperature gradient and has an area almost indistinguish-
able from that of the optimum fin. 
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Xenon Spatial Oscillations* 

In an earlier article (1), the threshold values of the flux 
for oscillations in the axial power distribution were esti-
mated as a function of reactor size and degree of flux flatten-
ing, for a cylindrical reactor with a zero power coefficient. 
The purpose of this letter is to make available the results of 
more recent calculations that show the effect of nonzero 
power coefficients, and the threshold values for "flux t i l t " 
oscillations in a cylindrical reactor with a flattened radial 
power distribution. 

The mathematical development and the constants em-
ployed in the calculations are given in ref. 1. In that paper 
it was shown that the flux threshold for oscillations and the 
corresponding oscillation periods could be obtained, with 
an error of less than 5%, from the amount of material buck-
ling that must be added uniformly to the critical reactor to 
excite the first spatial harmonic orthogonal to the unper-
turbed power distribution. The relations among the thresh-
old flux level for axial oscillations, the oscillation period, 
the additional buckling required to excite the first har-
monic, MI2, and the power coefficient are given in Eqs. (10) 
and (11) of ref. 1. 

Figure 1 shows the effect of a nonzero temperature 
coefficient (2) on the flux threshold for xenon oscillations for 
an unflattened (cosine) power distribution in a slab re-
actor (or in the axial direction of a cylindrical reactor). The 
units of the temperature coefficient are milli-k of reactivity 
per unit power where unit power corresponds to a flux level 
of 6 X 1013 n/cm2 sec. For other flux levels, if an effective 
temperature is defined as being directly proportional to the 
flux level, the temperature coefficient per unit effective 
temperature is assumed constant. 

* The information contained in this article was devel-
oped during the course of work under contract AT(07-2)-l 
with the U. S. Atomic Energy Commission. 
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The buckling, B2, required in the outer region is a function 
of the degree of flattening, 8, as determined by 

MB8) _ Yi(BS) 
Jo(B) Y0(B) 

The first harmonic that is orthogonal to go is 

gi = Ai JiGui r) cos 0 

YI(A) J 
cos 6 

r ^ 5 

5 ^ r ^ 1 

where 
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FIG. 1. Effect of temperature coefficients on xenon axial 
oscillation threshold. The units of the temperature coef-
ficient are milli-k of reactivity per unit power where unit 
power corresponds to a flux level of 6 X 1013 n/cm2 sec. 

A = \ / B 2 + MI2 

The buckling that must be added to excite this first har-
monic, mi2, is a function of the flattening parameter, 8, as 
determined by the requirement for continuity of current, 
through the relation, 

Ji(a) aJifjiid) f Ji(a) | 
JiiaS) - FI (A«) = ——- Jo(a8) - —— Y0(A8) 

Yi(a) Mi Jofa S) [_ Fi(a) J 

Figure 2 shows this radial MI as a function of 5. Figure 3 
shows threshold values of the flux for radial power oscilla-
tions as a function of the reactor size R2/M2 and of the frac-
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FIG. 2. Threshold parameter for reactor with flattened 
power distribution. Square root of buckling, required to 
excite the first harmonic instability for reactors with unit 
height and diameter. 

For a cylindrical reactor with a power distribution that 
is flattened for a fraction 8 of the total radius, the unper-
turbed power distribution, g0 , is given by 

tfo = Constant r ^ 8 

1 

Degree of Flatness, S 

FIG.3. Threshold flux values for spatialxenon instability 
in cylindrical reactors. = flux for radial instability 
and flux for axial instability. Values of R2/M2 

are selected so that R = 1/2H for corresponding curves. 
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The Transfer Cross Section Between 
Overlapping Thermal Groups 

A neutron thermalization problem which has received 
some attention in the literature (1, 2) is that of finding the 
variation in space of the thermal neutron spectrum in two 
adjoining regions of scattering material at different tem-
peratures T and T̂o . The overlapping thermal group theory 
(2) approaches this problem by assuming that the neutron 
flux spectrum has the form 

v) = 4>(X)M(V) + <t>0(x)M0(v) (1) 

where v is the velocity, x is the space coordinate, and M and 
Mo are maxwellian distributions at the bulk temperatures 
T and T0 of the two media. Then the thermalization problem 
becomes one of solving two diffusion equations in the neu-
tron groups 4>(x) and </> 0(x) which are considered 
monoenergetic for the purposes of diffusion. These equations 
have been given by Selengut (2) and are discussed at the end 
of the letter. In this model neutron thermalization is re-
placed by a transfer process which takes the neutrons from 
one group to the other. Selengut (2) has given a "transfer 
cross section" 
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FIG. 4. Period of xenon oscillation as a function of the 
threshold value of the neutron flux. 

tion of the radius that is flattened, for the case of a zero 
power coefficient. For comparison the corresponding curves 
for axial oscillations (1) are included in Figs. 2 and 3 as 
dashed lines, where, for a cylindrical reactor with a core 
diameter equal to the core height, the corresponding value 
of H2/M2 is four times that of R2/MK We see that, for such 
a reactor, more buckling must be added to excite the first 
radial harmonic than to excite the first axial harmonic, so 
that the threshold flux for radial oscillation lies above that 
for an axial oscillation. 

Figure 4 shows the oscillation period at the threshold as 
a function of the threshold flux level. As shown in Eq. (11) 
of ref. 1, this period is a function of the threshold flux only 
and not directly a function of the pile size, flatness, or 
oscillation mode. Thus the curve of Fig. 4 is good for any 
degree of flatness and for both axial and " t i l t " oscillations. 
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<TT = ~ <7FA A (2) 

for a heavy gas of mass A and free atom cross section a fa. 
This letter considers a free gas of any mass A, and derives 
an expression for <tt , which is valid once assumption (1) 
has been made. For the part of the spectrum at temperature 
To in the medium at temperature T it is 

(AT T\ 2 V l + T/(ATQ) 
(3) 

In the medium at temperature T, the first part of the 
spectrum in Eq. (1) does not exchange energy with the 
medium since it is also at temperature T. However the 
second part of the spectrum in Eq. (1) does exchange energy 
because it is at the different temperature T0 . In the over-
lapping group theory the second group is transferred to the 
first group in such a way that the rate of change of energy 
is made equal to that calculated in free gas theory. In a 
free gas at temperature T which has a scattering cross sec-
tion <rs , the rate of change of average energy per neutron 
of a neutron spectrum which is a maxwellian at tempera-
ture To is 

^ = - n J as(Eo)(Eo - E)a VgMQ dvo (4) 

where n is the number of atoms per cubic centimeter, 
(Eo — E) is the average energy change undergone by a 
neutron of energy E0 in a collision in a free gas at tempera-
ture T, and 

4 (2kT0\-*» 2 f-mv o2\ 
(5) 

is the fraction of neutrons per unit velocity interval, 
von Dardel (5) has evaluated first the quantity (E0 — E)ax 

and then the integral (4) explicitly in the course of his work 




