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that it should be quite useful in several cases. However, it 
is clearly necessary to do further work in order to find out 
the limitations of this method. It would be desirable to 
study a greater variety of geometries as well as investigat-
ing the theoretical aspects of the problem more in detail. 

The author is greatly indebted to Mr. M. Leimdorfer, 
A. B. Atomenergi, Stockholm, for communicating his results 
prior to publication and for interesting discussion. 
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FIG. 1. DNB heat flux vs. steam energy flow at 1000 psi 
in vertical tubes. Data from WAPD-188 and ANL4627. 

Two Regimes of Burnout (DNB) Correlated 
with Steam Energy Flow for Uniformly-

Heated Channels 

Experimental determinations of "burnout heat flux" in 
subcooled or boiling-water systems have generally been 
supplanted by measurements which determine the heat flux 
at which nucleate boiling has become intense enough to 
start formation of a low-conductivity film of steam on the 
surface. The phenomenon is frequently called "departure 
from nucleate boiling" (DNB), and is usually considered 
to occur at heat fluxes only a few percent below those caus-
ing physical burnout and destruction of the test element. 
When published values of DNB heat-flux are plotted against 
such arguments as quality (x), enthalpy (h), or mass veloc-
ity (G) the data show wide scatter. 

This scatter is minimized when the data are plotted 
against the argument G(h — /̂ saturation), which has the same 
dimensions as heat flux, Btu/ft2 hr or watts/cm2. In a boiling 
channel G(h — hf) can be called "steam energy flow" or 
" S E F " and signifies the rate of flow of enthalpy of vaporiza-
tion across unit flow area. Its value at the core exit is a 
measure of boiling reactor performance, and depends only 
upon the flow of feedwater which is totally vaporized in the 
core, not upon any accompanying recirculating saturated-
water flow used as a "carrier" for the feedwater. 

G(h — hig) has a negative value for subcooled water, and 
is a convenient correlating parameter in the subcooled 
region also. The use of negative values of steam energy flow 
is analogous to the use of "negative quality" (x < 0) in 
other correlations. 

Figure 1 is a typical plot of DNB heat flux against SEF 
with uniform axial power distribution. Two distinct regimes 
of DNB exist. The upper (DNB-1) regime shows continu-
ously decreasing DNB heat flux with increasing SEF 

through the subcooled region and extending well into the 
quality region. In this regime the transition from normal 
boiling into film blanketing is usually a sharp one, and 
usually occurs at heat fluxes exceeding 0.5 X 106 Btu/ft2 hr. 
Burnout of this type can be considered a thermal instability. 

A lower-heat-flux (DNB-2) regime exists in channels 
with net boiling. The data plot along a line which cor-
responds to a constant ratio of boiling length to thermal 
equivalent diameter, LB/Dq = (Q/A) /4G(h — hi) and con-
sequently to a constant ratio of boiling length to total 
length Lb/Lt . The thermal equivalent diameter, Dq = 4 
(flow area)/(heated perimeter) is identical to hydraulic 
diameter when heated and wetted perimeters are identical. 
Usually, 

0 . 8 ^ ( L B / L T ) D N B - 2 G 1 . 0 ( 1 ) 

Equation (1) signifies that most data obtained with the 
boiling length greater than 80% of the total length lie in the 
DNB-2 regime. DNB in this regime has been observed at 
heat fluxes as low as 104 Btu/ft2 hr; it is usually accompanied 
by large oscillations in flow and pressure drop and can be 
considered a hydrodynamic instability. 

In each regime high-quality, low-mass-velocity points 
lie adjacent to low-quality, high-mass-velocity points. 

For data in which LB/LT < (Lb/LT)DNB-2 , hydrody-
namic instabilities are seldom found and points lie in the 
DNB-1 regime. A simple expression which describes the 
major trends in DNB-1 data over wide ranges of subcooled 
and quality operation is: 

( Q M ) D N B - I = K Q / A W I H - A F - G ( H ~ H L ) (2) 

To fit data considered here, substitution of empirical 
constants provides (2a) in the Btu-ft-hr-lb system. 

G(h - hi) 
400 ( 2 a) (QM)DNB-I = 3.8(htK)2 • 

14.7 psi ^ P S 2750 psi. 
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Extrapolation of this correlation to very high steam 
energy flows is questionable, since available data at high 
steam energy flow is questionable, since available data at 
high steam energy flow usually lie on the DNB-2 line. 
DNB-1 data at high steam energy flow must be obtained 
with test channels of very large LT/DQ , operated at low 
heat fluxes and with considerable inlet sub-cooling. If 
more data were available in this region a DNB-1 cor-
relation could be obtained which could be used with con-
fidence even for very long reactors. 

Changes in flow-loop and test-channel configuration and 
in instrumentation used to detect DNB usually exert rela-
tively minor effects on DNB-1 heat flux. Both increasing G 
and decreasing DQ tend to produce small increases in 
(Q/A)DNB-2 beyond those implicit in Eq (2). 

The DNB-2 curve, however, is highly dependent on the 
details of the system; in particular, the slope of the DNB-2 
curve is inversely proportional to LB/DQ . Figure 2 shows 
correlating curves in the boiling region for a tube and for a 
rectangular channel heated on both sides, as well as data 
points for 7-rod and 19-rod bundles. Note that all test 
points on bundles appear to be in the DNB-2 or oscillating-
flow regime, and that the critical LB/DQ lies between 70 and 
80 for the 19-rod bundle and between 80 and 90 for the 7-rod 
bundle. These bundles were evidently tested with boiling 
lengths which were too long to permit nonoscillatory 
(DNB-1) burnout. 

Figure 3 compares experimental data from one apparatus 
at three pressures with the above equations. The critical 
boiling length for hydrodynamic instability (DNB-2) is 
essentially independent of pressure. DNB-1 heat fluxes in-
crease continuously with decreasing pressure. 

It appears that one of the major shortcomings of many 
currently used (and conflicting) DNB correlations is their 
attempts to write single expressions which include both 
"normal" DNB-1 data and pulsating-flow DNB-2 data. If 
DNB vs. SEF plots are used to segregate the two kinds of 
data, it appears likely that useful correlations of a detailed 
nature could be obtained which are vastly superior to either 
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FIG. 2. DNB-1 and DNB-2 heat flux vs. steam energy 
flow for several flow-channel configurations. Data from 
WAPD-188. 
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FIG. 3. DNB heat flux data and correlation curves at 
three pressures. D = 0 . 3 0 6 inches, Ltotai = 2 3 . 2 5 inches. 
Data from WAPD-188. 

the approximations presented here or to the currently-used 
correlations. 

Experimental points in both DNB regimes represent the 
exit values, or right-hand termini, of horizontal (constant 
heat-flux) lines which begin at the lower SEF value of the 
test section inlet. The length of horizontal line representing 
a test run is equal to the change in SEF from inlet to outlet, 
and can be calculated from Eq. (3). 

A S E F = G Q l ^ i t - hi nlet) 
. £total ( Q \ 

(3) 

In Fig. 1, for channels with subcooled inlet, the region to 
the left of the DNB-1 and DNB-2 curves represents the 
"safe" operating region for uniformly heated sections. Note 
that under these conditions a maximum exit steam energy 
flow of about 2.5 X 108 Btu/ft2 hr can be obtained from a 
channel at a heat flux of about 106 Btu/ft2 hr; an attempt to 
obtain the same steam flow at lower heat flux would result 
in oscillatory burnout. Thus the concept of using a "burnout 
ratio" based on the upper, DNB-1, line as a safety factor 
may not in itself be sufficient to assure conservative design. 

Most H 20 and D20-cooled reactors operate with design 
maximum heat fluxes below the DNB-1 range. It appears, 
therefore, that burnout by the customarily-assumed 
thermal instability of the DNB-1 mechanism is unlikely 
except during large reactivity excursions. Burnout in the 
hydrodynamically-unstable DNB-2 regime appears much 
more likely, particularly for very long reactors, such as 
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those designed for D20, and it is suggested that more em-
phasis be placed on the latter phenomenon. The hydro-
dynamic instability is a strong function of not only LB/LT , 
but also of the configuration of the test section, and of the 
entire flow loop, pressure drop, and presumably of power 
distribution. The use of flow-stabilizing orifices presumably 
increases the critical LB/LT , while the existence of com-
pressible volume in the loop may decrease it; in fact, hydro-
dynamic instabilities can be induced even in the subcooled 
region if surge volume is present. 
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Minimum Mass Thin Fins with Internal 
Heat Generation 

In a recent paper (1) Minkler and Rouleau have con-
sidered the effect of a constant heat generation rate 
(Q Btu/hr-ft3) on the heat transfer in thin longitudinal fins. 
In particular, they have asserted that the temperature 
gradient is constant in a fin designed to have minimum 
mass (= minimum profile area Ap) in the class of fins which 
transfer a specified amount of heat (qo Btu/hr-ft) from a 
base at a specified temperature (T0) by convection to sur-
roundings at another specified temperature (selected as the 
zero of the temperature scale) if the thermal conductivity k 
and the heat transfer coefficient h are constant. I have 
shown elsewhere (2) that this assertion is mathematically 
incorrect when Q > 0 (the error is significant only for large 
Q), and have set up and solved the problem of Bolza in 
the calculus of variations to find the fin profile and the 
temperature distribution for the fin with minimum profile 
area. 

Since the optimum fin profile has a sharp tip (this is true 
also for the optimum fin with a constant temperature 
gradient) it is natural to inquire what penalty in profile area 
must be paid in order to use a fin with a triangular profile, as 
in Fig. 1. This question is answered here, and the results are 
presented in Fig. 2, which shows a graph of the dimensionless 
quantity a = h2kT03Ap/q03 versus A = Qq02/kh2T03 for the 
optimum triangular fin as well as for the optimum fin and 
several points for the optimum fin with a constant tempera-
ture gradient. The data for the curved fins are taken from 
ref. 2. We also show in Fig. 2 graphs of the dimensionless 
over-all height of the fin p = whTo/qo . 

With reference to Fig. 1, let q(x) and T(x) be respectively 
the heat flow rate per unit length of fin (Btu/hr-ft) and 
temperature excess over the surroundings at the point x in 
the fin where the fin thickness (ft) is 2dx/w. Then 

, . 8xdT dq 2Q8x 
q(x) = 2k- — = 2hT —— ,0 < x < w, (1) 

w dx dx w 

are the differential equations governing the heat transfer in 
the fin. Since no heat flows through the tip of the fin, we have 

FIG. 1. Sketch of profile of triangular fin 

the boundary conditions 

x = 0, q = 0; x = w, q = q0 , T = T0 . (2) 

The fin profile area is 
Ap = 5 w, (3) 

and the mathematical problem is that of finding two con-
stants 8 and w and two functions q(x) and T(x), defined 
when 0 ^ x ^ w, and satisfying the differential equations 
(1) and the boundary conditions (2), for which the profile 
area (3) is a minimum. 

If we eliminate q from the differential equations (1) and 
the boundary conditions (2), we see that 

A 
dx 

hwT Qx „ 
- — , 0 < £ < w, (4) 

k8 k 

z = = 0 •>x = w , T = T ^ = £ - . (5) 
dx dx 2 k8 

A particular solution of the inhomogeneous linear differen-
tial equation is Qk82/h2w2 + Qbx/hw, and the general solu-
tion can be found by adding to this particular solution the 
general solution of the homogeneous linear differential 
equation. If a new variable u = 2(hwx/k8)112 is introduced, 
the homogeneous equation takes the form 

d2T dT 
u~— + — - uT= 0 

du2 du 

of Bessel's equation of zero order and imaginary argument. 
Therefore the general solution of the differential equation 
(4) is 

T = ITT + ? + TJLBUU) + CKq(U)\, (6) n2w2 hw 
in which B and C are arbitrary constants, and I0 and K0 are 
the standard Bessel functions of zero order. In terms of the 
dimensionless quantities a, A, and n introduced earlier and 
X = 2(hw2/k8)112, we see that 

kh2T£A = M̂O 4g0V 
qQ2 ,W hT0' ~ hkTW 




