
Optimum Control and Flat Flux 

I t was shown by Dr. G. Goertzel in his important in-
vestigations of the minimum critical mass problem (1) 
that in a homogeneous thermal reactor with constant mod-
erating and thermal transport properties throughout core 
and reflector the minimum critical mass is achieved if the 
fuel is distributed so that the thermal flux in the core is 
flat. Subsequently it was pointed out (8) that a formally 
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FIG. 1. Slow and fast fluxes in a MTR type slab reactor 

with optimal control. The poison distribution is shown in 
the inset. 
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FIG. 2. Poison distributions required for criticality 
within the optimal size control region of a slab reactor (two-
group). 

quite similar problem exists, that of optimum control: 
the amount of poison introduced into a homogeneous 
thermal reactor is minimal if the control rods are arranged 
in a central control region in such a way that the thermal 
flux is flat; again it is assumed that the moderating and 
thermal transport properties are constant throughout the 
controlled and the uncontrolled regions. 

Indeed, both cases—optimum control as well as mini-
mum critical mass—are covered by a theorem which was 

proved by Dr. Goertzel (1), using the methods of the cal-
culus of variations: if H is a symmetric operator, p(x) a 
nonnegative function normalized so that fdxp{x) = 1, 
and <PO(X) the fundamental mode of the eigenvalue equation 

•p o = \oH(pcpo), (1) 

then Xo will be smallest if p is a constant. In the optimal 
control problem, the relations between the thermal flux <p 
and the slowing down density ^(thermal) are 

q = i3/riScp 

and 

<p = £.(q - ~Lc<P - sTfp) (2) 
where £„ is the diffusion operator, describing the effect of 
the introduction of a thermal neutron at one point in the 
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FIG. 3. Fluxes in a slab reactor with flat thermal flux in 
the undersized control region. The areas under the curves 
in the inset are representative of the ratio of continuous 
to lumped poison. 

reactor on the thermal flux at all the other points; £ / is 
a similarly defined slowing down operator; 3Se is the capture 
cross section of fuel and moderator; and 2„ that of the con-
trol rods. A normalized poison density is defined by 

XP/2C = <Sp/2c)avg P ( X ) = - X p ( x ) , 

where the average is taken over the control region. This, 
together with Eq. (2), gives us the reactor equation for 
the thermal flux: 

f = -{Sp/Sc)avg[l - 2c(£„£/»; - £s)]-1£s(p*>) 
= XH (pip). (3) 

Thus, the theorem which we have quoted above applies 
also to this case, always provided that the operator H is 
symmetric. An example in point is the multigroup formal-
ism, in which H is symmetric since it is composed 
of Green's functions of self-adjoint differential equations. 
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are continuous everywhere inside the reactor (Fig. 1). The 
poison distribution is shown in the inset, and also in Fig. 
2, curve (1). The mean value of curve (1) is indicated by 
the dot-and-dash line. A uniform poison distribution which 
would maintain criticality would have to have the strength 
given by curve (2). 

If in a reactor of fixed size we decrease the extent of the 
control region, keeping the thermal flux inside it flat, the 
reactor will go supercritical if we do not add lumped poison 
at the boundary of the control region. The poison in our 
example absorbs only thermal neutrons. Therefore, the 
first derivative of the thermal flux has a discontinuity at 
the control region boundary (Fig. 3). The total poison in-
vestment is indeed greater than in the optimal case, as we 
can see from Fig. 4. Similarly, if the size of the control 
region is increased beyond the optimal dimensions, the re-
actor will only remain critical, and the flux flat, if lumped 
sources are attached at the control region boundaries. 
However, it turns out that the optimum found by means of 
the calculus of variations is only a stationary point; if we 
interpret sources as negative poison, lumping at the bound-
aries leads to less total "poison" than the optimal dis-
tribution does. 

I wish to thank Dr. A. M. Weinberg for his interest in 
this work. 
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FIG. 4. Dependence of the poison investment / dxZv(x) 

required for the maintenance of criticality in a slab reactor 
of width 2 X 35 [cm] on the size of the control region 2 x0-
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As an example, we have performed a two-group calcu-
lation for a slab reactor of MTR composition. Once the 
over-all size of the reactor has been decided upon, the size 
of the control region and the optimum poison distribution 
inside it are fixed. The fast and slow fluxes and currents 
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