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Note on Prediction of Monte Carlo Errors 

In a recent paper by Amster and Djomehri,I a coupled 
integral equation system was derived concerning the var
ious moments of the score due to a particle starting a 
flight at a given phase-space point in a Monte Carlo 
transport calculation. In a subsequent paper, Booth and 
Amster2 generalized the results of Ref. 1 to treat track
length estimators. The results of these papers are very 
likely among the most important recent developments in 
Monte Carlo theory, giving an efficient tool for variance 
study of Monte Carlo estimation methods. 

The purpose of this Letter is to give a slightly more 
general formulation of equations derived in Refs. 1 and 2. 
Furthermore, an equation system "dual" to those given in 
Refs. 1 and 2 is derived. This system determines the 
various moments of the total score due to a particle 
entering a collision at a given phase-space point. Simple 
relations between the score moments defined in Refs. 1 
and 2 and here are also established. It seems that this 
dual formalism is convenient in variance analysis of 
nonanalog games with scattering kernel biasing. 

Although the results of Ref. 1 were derived for analog 
games, any nonanalog game being governed by positive 
kernels, normalized to quantities less than or equal to 
unity, may also be described by the resulting Eqs. (12), 
(13), and (14) of Ref. 1 or Eqs. (13), (14), and (15) of Ref. 2 
as an analog game. The same applies to the equations 
derived below. In the following, the notations of Ref. 1 
are used. 

In Ref. 1, PA(P,s)ds and Ps(P,s)ds denote the probability 
of a score in ds about s due to absorption and scattering 
at P, respectively. In addition to these, we introduce two 
more probability density functions. Let Pe(P,s)ds be the 
probability that the score from an endless free flight 
starting from P will be in ds about s, as also defined in 
Ref. 2. Furthermore, let Pt(P,P',s)ds be the probability 
that the score from a flight between P and P' will be in 
ds about s. In the generalized theory of Ref. 2, Ps(P,s) and 
PA(P,S) are replaced by Ps(P,P' ,s) and PA(P,P' ,s), respec
tively, depending on the coordinates of two successive 
collision points. In most practical cases, these proba
bilities completely describe the score distribution. How
ever, using estimators proposed in Ref. 3 (where scattering 
and absorption in a given region and collisionless passage 
through it result in different scores), our more detailed 
description may be advantageous. On the other hand, this 
finer distinction in the score probabilities is necessary in 
the derivation of dual equations below. 

Let 1/I(P,s)ds and X(P,s)ds be the probabilities that a 
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particle starting a flight at P, and entering a collision at 
P, respectively, will yield a total score in ds about s. 
Following the train of thought of Ref. 1, we obtain the 
equations 

and 

where 

1/I(P,s) = [1 -J dP'C(P,P')]Pe(P,s) 

+ J dP'C(P,P')Pt(P,P',S)*PA(P',S) 

x [1 -J dP"E(P',P")] 

+ J dP'C(P,P') J dP" E(P' ,P") 

x Pt(P,P' ,shps(P' ,sh1/l(P" ,s) 

X(P,s) = [1 - dP' E(P,P')]PA(P,S) 

+ J dP' E(P,P')Ps(P,s)*Pe(P' ,s) 

x [1 - dP"C(P',p")] 

+ J dP' E(P,P') J dP"C(P' ,P") 

x Ps(P,s)*Pt(P' ,P",s)*X(P" ,s) 

!(.,shg(.,s) = i: ds' !(.,s')g(.,s - s') 

(1) 

(2) 

(3) 

is the convolution integral. It is heuristically obvious but 
it can also be derived from Eqs. (1) and (2) that the 
following relationship holds between the densities 1/1 and X: 

1/I(P,s) = [1 -J dP'C(P,P')]Pe(P,s) 

+ J dP'C(P,P')Pt(P,P',s)*X(P',s) (4) 

while 

X(P,s) = [1 -J dP'E(P,P')]PA(P,S) 

+ J dP'E(P,P')Ps(P,s)*1/I(P',s) (5) 

Let Mr(P) and Nr(P), (r = 0, 1, ... ) be the r'th moments of 
the total scores corresponding to the density functions 
1/I(P,s) and X(P,s), respectively. Multiplying Eqs. (1) and (2) 
by sr and integrating over s from _00 to +00 [with Mo(P) = 
No(P) =:; 1] yields 

Mr(P) = [1 -J dP'C(P,P')]f.: srPe(P,s)ds 

+ J dP'C(P,P') J: sr[pt(p,P',s)*PA(P',s)]ds 

x [1 -J dP"E(P',P")] + t (:) J dP'C(P,P') 
n=O 

x J dP"E(P',P")M,,(P") (6) 
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and 

Nr(P) = [1 -J dP'E(P,P')] i: srpA(p,s)ds 

+ J dP'E(F,P') i: sr[ps(p,S)*PE(P' ,s)] ds 

x [1 -J aP"C(P',P")] + t (~) J dP'E(P,P') 
n=O 

x J dP"C(P',P") i: sr-n'[ps(p,s)*Pt(P',P",s)] 

x dsNn(P") (7) 

In derivation of Eqs. (6) and (7), we have made use of the 
identity 

1.: sr[j(.,s)*g{.,s)]ds = nt (~)[i: sr-n f(.,s)ds] 

x [I: sng(.,S)dS] 

It can be seen from Eq. (6) that the scattering and 
absorption score densities of Ref. 2 are related to our 
densities according to the relations 

Ps(P,P',s) = Pt(P,P',s)*Ps(P',s) 

and 

PA(P,P',S) = Pt(P,P',S)*PA(P',S) 

According to Eqs. (4) and (5), the moments Mr and Nr are 
related as 

while 

Mr(P) = [1 -J dP'C(p,p')]i: s'PE(P,s)ds 

+ nt (~) f dP'C(P,P') 

Nr(P) = [1 -J dP'E(P,P')]i: s'PA(P,s)ds 

+ nta (~) J aP' E(P,P') 

(8) 

and 

N,(P) = [1 -J dP' E(P,P')] fl(P) + J dP' E(P,P') 

x [fs(P) + !E{P')]' [1 -J dP"C(P' ,pIll] 

x nta (~) J dP' E(P,P') J dP"C(P' ,P") 

x [fs(P) + ft(P',p")l'-nNn(p") (11) 

Equations (6) and (10) are slightly generalized forms of 
Eqs. (13) and (55) of Ref. 1 and Eqs. (13), (14), and (15) of 
Ref. 2. Equations (7) and (11) together with relation (8) 
may be advantageous in the efficiency study of nonanalog 
games with scattering kernel biasing. For example, in the 
MELP method,4 the score densities are 

Ps(P,s) = PA(P,S) = 6(s) 

and 

Pt(P,P',s) =PE(P,S) = c5[s +f(P) +f(P) - 1] (12) 

with 
1 Ii = T(P) ,Os f(P) s '2 ' 

where T is a transformation of the phase space. (In Ref. 4, 
T is the inversion of the particle's direction.) Denoting the 
unbiased and biased scattering kernels by E(P,P') and 
E(P,P'), respectively, the following relation holds4: 

E(P,P') = 2E(P,P')f (P')/[ f(P') + f (1")] (13) 

provided that transformation T in Eq. (12) is such that 

E(P,P') = E(P,P') 

If C(P',P") is the unbiased transport kernel, the biased 
kernel has the form4 

C(P',P") = C(P',P")/2f(P') (14) 

The weight of a particle at P" scattering at P with a weight 
of unity will be4 

w(P") = f(P') + f(P') (15) 

Expressions (13), (14), and (15) can easily be introduced 
into an equation of the form of Eq. (11) concerning the 
biased game5 to compare the score moments with those 
of the corresponding unbiased game, whereas a similar 
insertion into Eq. (10) leads to an equation containing the xL: rnps(p,s )dsM,,(P') (9) values of f(P) at different arguments. 

In the case when the scores are deterministic, i.e., if 

Pk(P,S) = 6[s - NP)] , (k = E,A,s) , 

Pt(P,P',s) = 6[s - ft(P,P')] 

then Eqs. (8) and (9) become 

M,(P) = [1 -J dP'C(P,P')]fJ(P) + J dP'C(P,P') 

x [ft(P,P') + /A(P')]' [1 -J dP"E(P',P")] 

+ nta (~) J dP'C(P,P') [ft(P,P') + fs(p')l'-n 

x J dP"E(P',P")Mn(P") (10) 
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