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Comments on Particle Transport in Finite Slabs 

In a recent contribution to this Journal, Woolf et al. 1 

have derived, through the method of invariant imbedding, a 
balance equation for the number of interactions suffered by 
particles in a one-dimensional rod of finite length. In par
ticular, they calculate Tn(t), the transmitted particle 
current emerging from the right end of the rod of length 
t after n interactions and Bn(t), the reflected particle 
current emerging from the left end of the rod after n inter
actions. The balance equation derived for these quantities 
is very similar to that which would arise if the method of 
regeneration points had been used. 2 Indeed, there is a 
close correspondence between the two methods. The main 
point of this Letter, however, is not to discuss the many 
ramifications and interrelationships of invariant imbedding 
theory, but simply to point out a very concise formulation 
of the basic equations obtained by Woolf et al. Thus, if we 
turn to Eqs. (10) through (14b) of their paper, and introduce 
the following generating functions, 

00 
G(z; t) = 6 znT n(t) (1) 

(2) 
n=O 

we can multiply Eqs. (10) through (14b) by zn and sum over 
n. The result can be written as 

00 

These equations for the generating functions are easily 
solved analytically, and after some manipulation we obtain 

G(z; t) 

(9) 

H(z; t) 

(10) 

where A = Iz - 1 and B = bz. 
The results of Eqs. (15) and (16) of Ref. 1 follow by 

collecting coefficients of zn. Thus, it is not necessary to 
solve the equations for Tn and Bn recursively. Certainly, 
however, it becomes tedious to carry out the expansions to 
a high order unless a general term can be identified; we 
have not been able to do this but neither have we tried very 
hard. An asymptotic analysis for very large n looks prom
ising. 

Some other properties of interest are readily written. 
For example, the total transmitted current is 

T(t) = 6 Tn(t) = G(I; t) 
n=O [{f-l)2 - b2]'!2COSh{f[{f- 1)2 - b2Y!2} - {f- I)Sinh{f[{f- 1)2 _ b2]l!2} , 

which reduces to 1/(1 + btlA) for the conservative case where 1 + b = 1. Similarly, the reflected current is 

(11) 

00 
B(t) = E Bn(t) = H(I; t) 

b sinh U [(j - 1)2 - b2ll/2} 
(12) 

n=O 

A dH~~; t) = bzG"(z; t) 

dG(z, t) 
A --cIt- = (fz - 1) G(z; t) + bzH(z; t) G(z; t) , 

subject to 

G(z, 0) 

G(O, t) 

1 

exp (-tIA) 

H(z,O) = 0 

H(O, t) = 0 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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which for 1 + b = 1 becomes btl('A + bt). 
A further interesting physical quantity arises if we allow 

the length of the rod to become semi-infinite, i.e., t -> 00. 
Then, clearly, G(z; 00) = 0, and we conclude that the trans
mitted flux is zero. On the other hand, the reflected 
particle flux is given by 

H(z, 00) _ ~_--;;----,b;;-z--;;-:-;,=-__ _ 
, - [(tz - 1)2 - b2 Z2]l!2 - Iz + 1 

(13) 

Expanding to order Z3, we find 

( . _ b fb 2 1 b (b2 4/2) 3 H z, 00) - '2 z + 2 z + 8' + z + ... (14) 

Thus, the fraction of particles reflected after one inter
action is b/2, the fraction after two is fb12, and so on. 
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The mean value and variance of the distribution are 
readily obtained from 

T(t) = aG(z; t) z = 1 
az 

?(t) _ T2(t) = a2
G(z; t) + aG(z; t) _ [aG(z; t)]2 
az2 az az 

z = 1 . 

Finally, we note that the space- and angle-dependent 
problem defined by Tn (t, iJ., iJ.o) and Bn(t, iJ., iJ.o) via Eqs. (24) 
through (27b) of the paper of Woolf et ai. can also be cast 
into generating function form: 

;t H(z;t,iJ.,iJ.o) = ~ f1 diJ." f diJ.' f(iJ.'-+ iJ.") z <I>(z; t,iJ., iJ.") 

x <I>(z; t, iJ.', iJ.o) , (15) 

a 1 
iJ. at <I>(z; t, iJ., iJ.o) + ~ <I>(z; t, iJ., iJ.o) 

= ~ fa1 diJ.'f(iJ.'-+ iJ.)z<I>(z;t,iJ.',iJ.o) 

+ 1.11 dll' fO diJ."f(iJ.' -+ iJ.") z<I>(z; t, iJ.', iJ.0) H(z; t, iJ., iJ."), (16) 
i\ 0 -1 

where iJ.'<I>(z;t,iJ.',/J.o) = G(z;t,iJ.',iJ.o), G and H being defined 
as above. The boundary conditions are 

G(z; 0, iJ., iJ.o) 6(iJ. - iJ.o) 

G(O; t, iJ., iJ.o) exp (-t/i\iJ.) 6(iJ. - iJ.o) 

H(z; 0, iJ., iJ.o) 0 

H(O; t, iJ., iJ.o) 0 

(17) 

(18) 

(19) 

(20) 

These equations are very similar to those based on the 
backward equation for probability balance introduced into 
reactor theory by Pie and by Bell.4 

A further use of the generating function technique can be 
found in Eq. (42) of Ref. 1, where the n'th collision distri
bution is given by 

(21) 

Introducing 
00 

G(z;~) = L) ~nm zn (22) 
n=O 

leads to 

G(z;~) = ~~~; + ~ z fa' d~' Elm - ~'I) G(z; ~') (23) 

This equation can be solved by one of several analytic 
methods, and then the coefficients of zn can be extracted 
term by term. 

These comments are offered in a spirit of participation 
and in no way detract from the very interesting and valu
able numerical work of Woolf et ai. It is hoped that by 
employing the generating function technique and noting its 
close similarity with other stochastic processes, a better 
understanding of these matters will emerge. An example 
of this technique may be found in two forthcoming papers 
by the author. 5 
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Reply to "Comments on Particle Transport 
in Finite Slabs" 

In his Letter, Williams1 shows how the method of gener
ating functions gives an elegant and useful formulation of 
the orders-of-scattering approach to particle transport. 
We applaud his comments and believe that indeed this 
method enables new insights and analytic results to be 
obtained on this problem. 

In response to his Letter, we would like to offer the 
following comments: 

1. Because of the difficulty of determining the coeffi
cients of zn, the generating function solution to the one
dimensional transport case, Eqs. (9) and (10) of Ref. 1, 
does not appear to lead to a more efficient means for 
determining numerical values for orders-of-scattering 
results. As an analytic solution, it automatically has the 
advantage, as does the approach of Bellman et ai. [Eqs. (6), 
(7), and (8) of Ref. 2] and of Mingle,3 that numerical results 
at a given thickness do not depend on those at smaller 
thicknesses. It would be interesting if the polynomial
exponential-product form of the orders-of-scattering solu
tions [e.g., Eqs. (15) and (16) of Woolf et aI. 2

] could be 
utilized to advantage to develop a more efficient algorithm 
for evaluating the solution at an arbitrarily high order of 
scattering for a given thickness. 

2. Another author, Abu-Shumays,4 has previously ap
plied the generating function idea to orders-of-scattering 
invariant imbedding for transport in a slab. He applies the 
method to the invariant imbedding equations for the reflec
tion function described by Bellman et aI.,5 and by WingS and 
obtains results for the average number of collisions of 
reflected particles and its variance. 

3. Williams' Eq. (12) for B(t) is also published in the 
book by WingS and was derived by a Boltzmann-type 
approach. 

4. We have taken Williams' suggestion and have applied 
it to the problem of obtaining orders-of-scattering solu
tions of the time-dependent transport equation.7

,8 The gen
erating function technique shows considerable promise as a 
tool for obtaining insight in this area. 
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